1.4 Inverses: Part I

The \qquad inverse of a relation can be found by \qquad the x and y coordinates of the original function.

$$
(x, y) \rightarrow(\underline{Y}, \underline{X})
$$

For every (x, y) of a relation , there is an ordered pair (y, x) on the inverse of that relation.

Ex. \#2: Given the graph of the relation below sketch the graph of its inverse.

Original	
-6	3
-2	4
0	2
1	7

Inverse

3	-6
4	-2
2	0
7	1

Ex. \#3: On the above graph sketch the line $y=x$.
What do you notice about the graphs with respect to the line $\mathrm{y}=\mathrm{x}$?
They are reflections of each other over $y=X$

Ex. \#4: Is the graph of the original relation a function? How do you know?
Yes. Original relation is a function
One y-value for each x-value
Is the graph of the inverse a function? How could you tell without graphing the inverse whether it would be a function?
No, Not a function.
Some x-values that have 2 different y-values,

The graph of a relation and its inverse are \qquad Reflections of each other in the line $\mathrm{y}=\mathrm{x}$.

Horizontal Line Test:

- A test used to determine whether the graph of an inverse relation will be a function
- If a horizontal line intersects a graph in move than one place then the inverse of the relation is not a function.
The inverse of a function $y=f(x)$ may be written in the form

When the inverse of a function is itself a function then we use the notation
if the inverse is a function
the the inverse can be written os $f^{-1}(x)$
Ex. \#5: Consider the function $y=f(x)$ sketched below:
(a) Without graphing will the inverse graph be a function? Horizontal line test
Not a function
(b) Sketch the graph of $\mathrm{x}=\mathrm{f}(\mathrm{y})$.
(c) State the domain and range for both the original and the inverse.

$$
\begin{gathered}
y=f(x) \\
\{x:-5 \leq x \leq 5 \quad x \in \mathbb{R}\} \\
\{y:-3 \leq y \leq 4 \quad y \in \mathbb{R}\}
\end{gathered}
$$

$$
\begin{array}{cc}
x=f(y) & \\
\{x:-3 \leq x \leq 4 & x \in \mathbb{R}\} \\
\{y:-5 \leq y \leq 5 & y \in \mathbb{R}\}
\end{array}
$$

Ex. \#6: Consider the function $f(x)=x^{2}+2$.
(a) Graph the function $f(x)$. Is the inverse of $f(x)$ a function?

The inverse of $f(x)$ is not a function. $f(x)$ fails the Horizontal line test.
(b) Graph the inverse of $f(x)$
(c) State the domain and range of $f(x)$ and its inverse.
$f(x)$

$$
\begin{aligned}
& \{x: x \in \mathbb{R}\} \\
& \{y: y \geqslant 2 y \in \mathbb{R}\}
\end{aligned}
$$

$$
x=f(y)
$$

$$
\{x: x \geqslant 2 x \in \mathbb{R}\}
$$

$$
\{y: y \in \mathbb{R}\}
$$

(d) Restrict the domain of $f(x)$ so that its inverse will be a function. $x \geqslant 0$ we only get the right side of parabola.
(e) Sketch $\mathrm{f}(\mathrm{x})$ with its restricted domain and its inverse.

$$
f(x)=x^{2}+2 x \geqslant 0
$$

