AP Calculus
10.2 Slope Fields

Slope field: A graphical representation of the flow of tangent lines to the family of solutions for a differential equation.

Constructing a slope field:
Substitute points (x, y) into the differential equation to find slopes of tangent lines

1. Construct a slope field for $\frac{d y}{d x}=\frac{x y}{4}$ for $x \in[-2,2]$ and $y \in[-2,2]$

Reading A Slope Field:
(1) Examine along vertical lines: if slopes are the same then $\frac{d y}{d x}$ does not depend on Y.
(2) Along Horizontal lines if slopes are the same then $\frac{d y}{d x}$ does not depend on x.
(3) Quad (1) if slope segments are all © $\left(\rightarrow \frac{d y}{d x}\right.$ is not negative
(4) When x get bigger if $d y / d x$ gets bigger $d x d y / d x$ relates directly x
2. Consider the slope field in the window $x \in[-2.5,2.5]$ and $y \in[-2.5,2.5]$
a) What can you interpret from the slope segments.

- On vertical lines $\frac{d y}{d x}$ does not change.
 No y in $\frac{d y}{d x}$

$$
\text { - } \frac{d y}{d x} \text { is always }
$$

$$
\text { - as } \left.x \text { gets bigger } \frac{d y}{d x} \text { gets bigger }\right)
$$

b) Which of the following is most likely the differential equation
A) $\frac{d y}{d x}=0.5 x y$
B) $\frac{d y}{d x}=\frac{x^{2}}{y}$
C) $\frac{d y}{d x}=0.5 x^{2}$

$$
\begin{aligned}
& \text { c) Solve the differential equation } \\
& \frac{d y}{d x}=0.5 x^{2} \\
& d y=\frac{1}{2} x^{2} d x \\
& \int d y=\int \frac{1}{2} x^{2} d x
\end{aligned} \quad\left\{\begin{array}{l}
y=\frac{1}{2} \cdot \frac{1}{3} x^{3}+C \\
y=\frac{x^{3}}{6}+C
\end{array}\right.
$$

AP Calculus
3. Determine which of the following differential equations is the solution to the slope field. Then solve your differential equation.
 Horizontal segments have same slope No x 's for $\frac{d y}{d x}$
Need y's and no negative sign for $\frac{d y}{d x}$

$$
\begin{aligned}
\frac{d y}{d x}=\frac{1}{2} y \\
\frac{1}{y} d y=\frac{1}{2} d x \\
\int \frac{1}{y} d y=\int \frac{1}{2} d x
\end{aligned} \quad\left\{\begin{array}{r}
\ln |y|=\frac{1}{2} x+c \\
e^{\frac{1}{2} x+c}=y \\
y=C e^{\frac{1}{2} x}
\end{array}\right.
$$

A) $\frac{d y}{d x}=0.5 y$
B) $\frac{d y}{d x}=\frac{0.2 x}{y}$
C) $\frac{d y}{d x}=x y$
D) $\frac{d y}{d x}=x+y$
E) $\frac{d y}{d x}=\frac{1}{x}$
4. Determine which of the following differential equations is the solution to the slope field. Then solve your differential equation.

Need x and y as slopes change along horizontal and vertical lines
A) $\frac{d y}{d x}=x^{2}$
B) $\frac{d y}{d x}=\frac{y}{x}$
C) $\frac{d y}{d x}=-y$
D) $\frac{d y}{d x}=-\frac{x}{y}$
E) $\frac{d y}{d x}=x^{2}+y^{2}$

$$
\begin{aligned}
& \frac{d y}{d x}=-\frac{x}{y} \\
& y d y=-x d x \\
& \int y d y=\int-x d x \\
& \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+c \\
& y^{2}=-x^{2}+c \\
& x^{2}+y^{2}=c
\end{aligned}
$$

AP Calculus
5. Determine which of the following differential equations is the solution to the slope field. Then solve your differential equation.

A) $\frac{d y}{d x}=x+y$
B) $\frac{d y}{d x}=x-y$ $\frac{d y}{d x}=\frac{y}{x}$ $\frac{1}{y} d y=\frac{1}{x} d x$

$$
\int \frac{1}{y} d y=\int \frac{1}{x} d x
$$

$$
e^{\ln |x|} \cdot e^{c}=y
$$

$$
y=c x
$$

