10.2 Slope Fields

Constructing a slope field:

1. Construct a slope field for $\frac{dy}{dx} = \frac{xy}{4}$ for $x \in [-2,2]$ and $y \in [-2,2]$

				y-value		
	$\frac{dy}{dx}$	-2	-1	Q		2
x-value	-2	(-2)(-2)		0	(-2)()	(-2)(2)= -
		(-1)(-2) = 1		0		(-1)(2) = -1 -1
	Ö	0	D	0	Q	O
		$(1)(-2)_{=} -1$	$\begin{array}{c} (1)(-1)_{-1} \\ 4 \end{array}$	0	$(1)_{1}^{1} = 1$	$\binom{1}{4}\binom{2}{4} = \frac{1}{2}$
	2	2(-2)= -1	(2)(-1)1 y - 2	0		2(2)=1

A)
$$\frac{dy}{dx} = 0.5xy$$
 B) $\frac{dy}{dx} = \frac{x^2}{y}$ (c) $\frac{dy}{dx} = 0.5x^2$
c) Solve the differential equation
 $\frac{dy}{dx} = 0.5x^2$ $y = \frac{1}{2} \cdot \frac{1}{3}x^3 + C$
 $\frac{dy}{dx} = \frac{1}{2}x^2 \frac{dx}{dx}$ $y = \frac{x^3}{6} + C$
 $\frac{dy}{dy} = \int \frac{1}{2}x^2 \frac{dx}{dx}$

3. Determine which of the following differential equations is the solution to the slope field. Then solve your differential equation. 4 Horizontal Sequents have same slope

5. Determine which of the following differential equations is the solution to the slope field. Then solve your differential equation.

Need x and y as slopes change along vertical and horrzontal lines. Quod D slopes D dy is \mathbf{F} gy is

A) $\frac{dy}{dx} = x + y$ B) $\frac{dy}{dx} = x - y$ C) $\frac{dy}{dx} = x^2$ D) $\frac{dy}{dx} = 2y$ (E) $\frac{dy}{dx} = \frac{y}{x}$

$$\frac{dy}{dx} = \frac{y}{x}$$

$$\frac{1}{y} \frac{dy}{dy} = \frac{1}{x} \frac{dx}{dx}$$

$$\int \frac{1}{y} \frac{dy}{dy} = \int \frac{1}{x} \frac{dx}{dx}$$

$$\ln |y| = \ln |x| + C$$