10.2 Products, Quotients and Combinations of Functions

Review

1. Given $f(x)=2 x^{2}+3 x$ and $g(x)=5-x$ find the following.

$$
\begin{aligned}
& \text { a) } 4 f(x) \\
& =4\left(2 x^{2}+3 x\right) \\
& =8 x^{2}+12 x \\
& \text { c) } f(2)+4 g(2) \\
& =2(2)^{2}+3(2)+4[5-2] \\
& =8+6+4(3) \\
& =8+6+12 \\
& =86
\end{aligned}
$$

Products of Functions

$$
\begin{aligned}
& h(x)=f(x) g(x) \\
& h(x)=(f g)(x)
\end{aligned}
$$

b) $2 g(x)-f(x)$

$$
\begin{aligned}
& =2(5-x)-\left(2 x^{2}+3 x\right) \\
& =10-2 x-2 x^{2}-3 x \\
& =-2 x^{2}-5 x+10
\end{aligned}
$$

d) $2(f(x)+g(x))$
$=2\left(2 x^{2}+3 x+5-x\right)$
$=2\left(2 x^{2}+2 x+5\right)$

$$
=4 x^{2}+4 x+10
$$

Quotients of Functions

$$
\begin{aligned}
& h(x)=\frac{f(x)}{g(x)} \\
& h(x)=\left(\frac{f}{g}\right)(x)
\end{aligned}
$$

Ex.\#1 Given $f(x)=x^{2}-4$ nd $g(x)=x-1$ find the following:

$$
\text { b) } \begin{aligned}
& (f g)(-1) \\
& =f(-1) \cdot g(-1) \\
& =\left[(-1)^{2}-4\right] \cdot[-1-1] \\
& =(-3) \cdot(-2)=6
\end{aligned}
$$

c) $\left(\frac{f}{g}\right)(0)$

$$
\begin{aligned}
& =\frac{f(0)}{g(0)} \\
& =\frac{0^{2}-4}{0-1}=\frac{-4}{-1}=4
\end{aligned}
$$

Ex. \#2: $f(x)=x+3$ and $g(x)=\widehat{x^{2}+2 x-3 \text { Determine the equations for } h(x)}$
and $k(x)$ then state the domain and range of the new functions.

a) $h(x)=f(x) g(x)$
b) $k(x)=\frac{f(x)}{g(x)}$

$$
k(x)=\frac{x+3}{x^{2}+2 x-3}
$$

$$
k(x)=\frac{x^{2}+2 x-3}{(x+3)(x-1)} \quad \begin{aligned}
& \text { point of } \\
& \text { discontinuity } \\
& \text { of } x=-3
\end{aligned}
$$

$$
k(x)=\frac{1}{x-1}+0
$$

Domain: $\{x \mid x \neq-3, x \neq 1 \quad x \in \mathbb{R}\}^{\chi}$
Range: \qquad
Ex.\#3: Determine the equation of $h(x)=\frac{f(x)}{g(x)}$ and graph $h(x)$ if $f(x)=2 x-8$ and $g(x)=x^{2}-3 x-4$.

$$
\begin{aligned}
& h(x)=\frac{2 x-8}{x^{2}-3 x-4} \\
& h(x)=\frac{2(x-4)}{(x-4)(x+1)}
\end{aligned}
$$

point of discontinuity at $x=4$

$$
\begin{aligned}
& h(x)=\frac{2}{x+1}+0 \\
& y=\frac{1}{x} \quad \begin{array}{l}
y=\frac{2}{x} \\
\begin{array}{|l|l}
1 & 1
\end{array} \\
\begin{array}{r}
1 \\
2
\end{array} \\
-1 \\
-2 \\
-2
\end{array}
\end{aligned}
$$

Ex.\#5: Given that $f(x)=\frac{1}{x+3}$ and $g(x)=\frac{3}{x}$. Determine the equations for $h(x)$ and $k(x)$, state any restrictions.

$$
\begin{aligned}
& \text { a) } h(x)=\frac{f(x)}{g(x)} \\
& h(x)=x \neq-3 \\
& h(x)=\frac{1}{x+3} \cdot \frac{x}{x} \\
& h(x)=\frac{x}{3(x+3)}
\end{aligned}
$$

b) $k(x)=f(x) g(x)$

$$
\begin{aligned}
& k(x)=\frac{1}{x+3} \cdot \frac{3}{x} \\
& k(x)=\frac{3}{(x+3) x} \quad x \neq 0 \\
& k(x)=\frac{3}{x(x+3)} \\
& k \neq-3
\end{aligned}
$$

Ex. \#6: Given that $f(x)=2 \sqrt{x}-3$ nod $g(x)=\sqrt{x}+1$. Determine the equations for $h(x)$ and $k(x)$, state any restrictions.

$$
\begin{array}{ll}
\begin{array}{ll}
\text { a) } h(x)=\frac{f(x)}{g(x)} & \text { b) } k(x)=f(x)=(\sqrt{x}-1) \\
h(x)=\frac{2 \sqrt{x}-3 \cdot(\sqrt{x}-1)}{\sqrt{x}+\sqrt{x}-1)} &
\end{array} & k(x)=(2 \sqrt{x-2)(\sqrt{x}+1)} \\
h(x)=\frac{2 x-2 \sqrt{x}-3 \sqrt{x}+3}{x-\sqrt{x}+\sqrt{x}-1} & k(x)=2 x+2 \sqrt{x}-3 \sqrt{x}-3 \\
h(x)=\frac{2 x-5 \sqrt{x}+3}{x-1 \leftarrow} & k(x)=2 x-\sqrt{x}-3 \\
\sqrt{x} & \sqrt{x} \quad x \geqslant 0 \\
& \\
& \geq 0_{\text {radical }}
\end{array}
$$

