10.2 Products, Quotients and Combinations of Functions

Review

1. Given
$$f(x) = 2x^2 + 3x$$
 and $g(x) = 5 - x$ find the following.

a)
$$4f(x)$$

= $4(2x^2+3x)$
= $8x^2+12x$

c)
$$f(2) + 4g(2)$$

= $2(2)^{2} + 3(2) + 4[5 - 2]$
= $8 + 6 + 4(3)$
= $8 + 6 + 12$
= 26

Products of Functions

$$h(x) = f(x)g(x)$$

$$h(x) = (fg)(x)$$

b)
$$2g(x) - f(x)$$

= $2(5-x) - (2x^2 + 3x)$
= $10-2x - 2x^2 - 3x$
= $-2x^2 - 5x + 10$
d) $2(f(x) + g(x))$
= $2(2x^2 + 3x + 5 - x)$
= $2(2x^2 + 2x + 5)$
= $4x^2 + 4x + 10$

Quotients of Functions

$$h(x) = \frac{f(x)}{g(x)}$$

$$h(x) = \left(\frac{f}{g}\right)(x)$$

Ex. #1 Given $f(x) \neq x^2 - 4$ and $g(x) \neq x - 1$ find the following:

b)
$$(fg)(-1)$$

= $f(-1) \cdot g(-1)$
= $(-1)^2 - 4 \cdot [-1 - 1]$
= $(-3) \cdot (-2) = 6$
c) $(\frac{f}{g})(0)$
= $\frac{f(0)}{g(0)}$
= $\frac{6^2 - 4}{0 - 1} = \frac{-4}{-1} = 4$

Ex. #5: Given that $f(x) = \frac{1}{x+3}$ and $g(x) = \frac{3}{x}$. Determine the equations for h(x)and k(x), state any restrictions.

a)
$$h(x) = \frac{f(x)}{g(x)}$$

 $h(x) = \frac{1}{x+3} = x + -3$
 $h(x) = \frac{1}{x+3} \cdot \frac{x}{3}$
 $h(x) = \frac{x}{3(x+3)}$

b)
$$k(x) = f(x)g(x)$$

$$k(x) = \frac{1}{x+3} \cdot \frac{3}{x} \qquad x \neq 0$$

$$k(x) = \frac{3}{(x+3)x} \qquad x \neq -3$$

$$k(x) = \frac{3}{x(x+3)}$$

Ex. #6: Given that $f(x) = 2\sqrt{x} - 3$ and $g(x) = \sqrt{x} + 1$. Determine the equations for h(x) and k(x), state any restrictions.

a)
$$h(x) = \frac{f(x)}{g(x)}$$

b) $k(x) = f(x)g(x)$
 $k(x) = 2x - 3(x - 1)$
 $k(x) = 2x + 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x + 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$
 $k(x) = 2x - 2(x - 3)x - 3$

