2.1 Limits, Rate of Change and Tangent Lines

Rates of change are used to study relationships between two quantities.
Eg. Velocity: rate of change of position with respect to time
Population Growth: Growth rate with respect to time

Change in position $=$ Velocity x change in time.
However velocity is not constant. When driving a car the driver may speed up or slow down during a time period. Therefore we will calculate average velocity.

$$
\text { Average Velocity }=\frac{\text { Change in position }}{\text { length of time interval }}
$$

Change in position $=\Delta s=S\left(t_{1}\right)-S\left(t_{0}\right)$
change in time $($ length of time interval) $)=\Delta t=t_{1}-t_{0}$

$$
\begin{aligned}
& \text { length of time interval) } \\
& \text { Average velocity }=\frac{\Delta s}{\Delta t}=\frac{s\left(t_{1}\right)-s\left(t_{0}\right)}{t_{1}-t_{0}}
\end{aligned}
$$

1. A ball is dropped from as tate of rest at time $t=0$. The distance traveled after t seconds is $s(t)=16 t^{2} \mathrm{ft}$.
a) Compute the average velocity over the time period $[3,3.01]$

$$
\begin{aligned}
\Delta s & =s(3.01)-s(3) \\
& =16(3.01)^{2}-16(3)^{2} \\
& =.9616 \\
\Delta t & =3.01-3 \\
& =.01
\end{aligned}
$$

$$
\begin{array}{ll}
t_{0}=3 & t_{1}=3.01
\end{array}
$$

b) Shrink the time intervals and calculate the average velocities.

Time Interval	Average Velocity
$[3,3.01]$	$96.1 \mathrm{~b}^{\mathrm{ft}} / \mathrm{sec}$
$[3,3.005]$	$96.08 \mathrm{ft} / \mathrm{sec}$
$[3,3.001]$	$96.016 \mathrm{ff} / \mathrm{sec}$
$[3,3.0005]$	$96.008 \mathrm{ft} / \mathrm{sec}$

As the intervals shrink the average velocity is approaching $96 \mathrm{ft} / \mathrm{sec}$

$$
96 \mathrm{ft} / \mathrm{sec} \text { is the instantaneous velocity when } t=3 \mathrm{sec}
$$

Tangent Line:A line that touches the curve at one point

Secant Line: A line that passes through the curve at (2ponts)

$$
\text { Slope of secant }=\frac{s\left(t_{1}\right)-s\left(t_{0}\right)}{t_{1}-t_{0}}
$$

As the time interval shrinks the slop of the secant line \qquad approaches the slope of the tangent line

$$
\therefore t \rightarrow 0
$$

average velocity \rightarrow instant aneous velocity

