2.1 Limits, Rate of Change and Tangent Lines

Rates of change are used to study relationships between two quantities.

Eg. Velocity: rate of change of position with respect to time

Population Growth: Growth rate with respect to time

Change in position = Velocity x change in time.

However velocity is not constant. When driving a car the driver may speed up or slow down during a time period. Therefore we will calculate average velocity.

Average Velocity =
$$\frac{\text{Change in Position}}{\text{length d time interval}}$$

Change in position = $\Delta s = s(t_1) - s(t_0)$
Change in time
(hange in time
(tength of time interval) = $\Delta t = t_1 - t_0$
(tength of time interval) = $\Delta s = \frac{s(t_1) - s(t_0)}{\Delta t}$
Average Velocity = $\Delta s = \frac{s(t_1) - s(t_0)}{\Delta t}$

AP Calculus

1. A ball is dropped from a state of rest at time t = 0. The distance traveled after t seconds is $s(t) = 16t^2$ ft.

a) Compute the average velocity over the time period [3,3.01]

$\Delta s = s(3.01) - s(3)$ = $16(3.01)^2 - 16(3)^2$
- 9616
$\Delta t = 3.01 - 3$

= 01

 $t_0 = 3 \quad t_1 = 3.01$ Average Velocity = $\Delta s = \frac{.9616}{.01}$

= 96.16 fr

b) Shrink the time intervals and calculate the average velocities.

Time Interval	Average Velocity
[3,3.01]	96.16 ^{ft} /sec
[3,3.005]	96.08 ft/sec
[3,3.001]	96.016 ft /sec
[3,3.0005]	96,008 ft/sec

As the intervals shrink the average velocity is approaching

intervals shrink the average velocity is approaching 96 Ft/Sec 96 Ft/Sec is the instantaneous velocity when t=3 sec

Tangent Line: A line that touches the curve at one point

Secant Line: A line that passes through the curve at (2 points)

