2.1 Limits, Rate of Change and Tangent Lines

Rates of change are used to study relationships between two quantities. Eg. Velocity: rate of change of position with respect to time Population Growth: Growth rate with respect to time

Change in position $=$ Velocity x change in time.
However velocity is not constant. When driving a car the driver may speed up or slow down during a time period. Therefore we will calculate average velocity.

Average Velocity =

1. A ball is dropped from a state of rest at time $t=0$. The distance traveled after t seconds is $s(t)=16 t^{2} \mathrm{ft}$.
a) Compute the average velocity over the time period $[3,3.01]$
b) Shrink the time intervals and calculate the average velocities.

Time Interval	Average Velocity
$[3,3.01]$	
$[3,3.005]$	
$[3,3.001]$	
$[3,3.0005]$	

As the intervals shrink the average velocity is approaching

Tangent Line:

Secant Line: \qquad

Slope of secant $=$

As the time interval shrinks the slope of the secant line \qquad
\qquad

