2.1 Limits, Rate of Change and Tangent Lines

Rates of change are used to study relationships between two quantities.

Eg. Velocity: rate of change of position with respect to time

Population Growth: Growth rate with respect to time

Change in position = Velocity x change in time.

However velocity is not constant. When driving a car the driver may speed up or slow down during a time period. Therefore we will calculate average velocity.

Average Velocity =

1. A ball is dropped from a state of rest at time t = 0. The distance traveled after t seconds is $s(t) = 16t^2$ ft.

a) Compute the average velocity over the time period [3,3.01]

b) Shrink the time intervals and calculate the average velocities.

Time Interval	Average Velocity
[3,3.01]	
[3,3.005]	
[3,3.001]	
[3,3.0005]	

As the intervals shrink the average velocity is approaching

AP Calculus

Tangent Line:_____

Secant Line:_____

Image: Second second

Slope of secant =

As the time interval shrinks the slope of the secant line _____