2.2 Limits: A Numerical and Graphical Approach

1. Investigate $\lim_{x\to 1} f(x)$ where $f(x) = \frac{x^3-1}{x-1}$ $x \ne 1$ numerically and graphically.

Numerically:

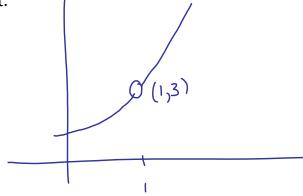
$x \rightarrow 1 -$ From the left	$x^3 - 1$	$x \rightarrow 1 +$	$x^3 - 1$
From the left	$\overline{x-1}$	From the right	${x-1}$
0.8	2.44	1.1	3.31
.99	2,9701	1.01	3.030
.999	2.997	1.001	3,003

Therefore $\lim_{x\to 1} f(x) = 3$

Graphically:

Graph the function on a graphing calculator. Use the trace function to determine $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right$

the limit.



Therefore $\lim_{x\to 1} f(x) = 3$

Definition of a limit:

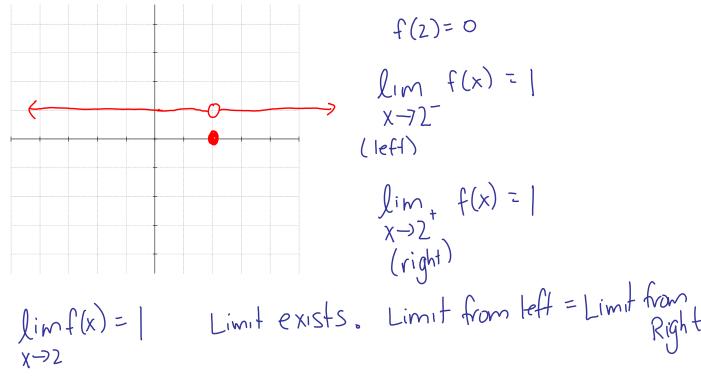
$$\lim_{x \to a} f(x) = L$$

The limit of f(x) as x approaches a is equal to L

2. Find the limit numerically $\lim_{x\to 0} \frac{x}{\sqrt{x+1}-1}$

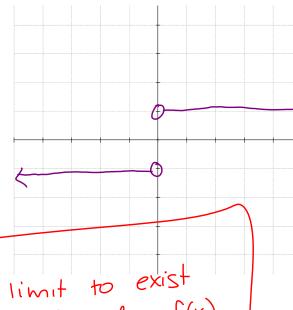
X->0-	1(x)	X->O+ Right	f(x)
-0.1	1.94	0.1	2,05
-0.01	1,995	0.01	2,005
-0.001	1.9995	0,001	2,0005

3. Determine $\lim_{x\to 2} f(x)$ graphically given that $f(x) = \begin{cases} 1 & x \neq 2 \\ 0 & x = 2 \end{cases}$



$$\lim_{x\to 2} f(x) = \int_{0}^{1}$$

4. Determine $\lim_{x\to 0} f(x)$ graphically given that $f(x) = \frac{|x|}{x}$



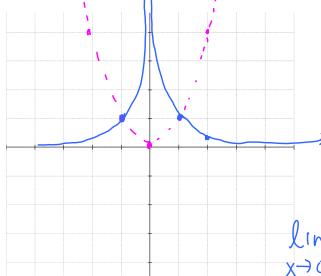
$$\lim_{x\to 0^{-}} f(x) = -1$$

$$\lim_{x\to 0^{+}} f(x) = 1$$

limit from the left # limit from the right

. Lim f(x) does not exist.

- For a limit to exist $\lim_{x\to a^{+}} f(x) = \lim_{x\to a^{-}} f(x)$
 - 5. Determine $\lim_{x \to 0} f(x)$ graphically given that $f(x) = \frac{1}{x^2}$

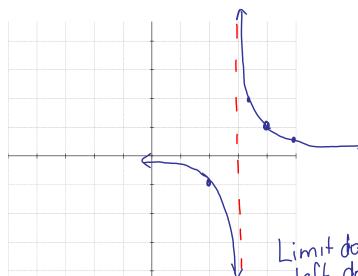


$$\lim_{x\to 0^+} f(x) = \emptyset$$

limf(x) is not approaching a real x+0 number "L"

It is unbounded.

6. Determine $\lim_{x\to 3} f(x)$ graphically given that $f(x) = \frac{1}{x-3}$



Joe average function $y = \frac{1}{x}$

lim f(x) = - or

X->3

lim f(x) = or

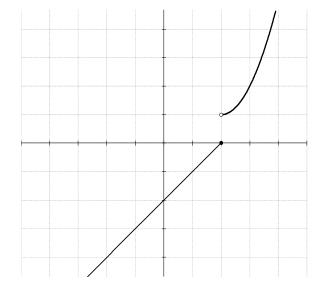
X->3

Limit does not exist. Limit from the

left does not equal limit from the

right.

Determine the limits. 7.



a)
$$\lim_{x\to 0} f(x) = -2$$

b)
$$\lim_{x\to 3} f(x) = 2$$

c)
$$\lim_{x\to 2^-} f(x) = \bigcirc$$

d)
$$\lim_{x\to 2+} f(x) = \int$$

e)
$$\lim_{x\to 2} f(x) = 0$$
 of exist

d) $\lim_{x\to 2+} f(x) = 1$ e) $\lim_{x\to 2} f(x) = Does \text{ not exist}$ One sided limits exist but not limf(x), since $x\to 2$ left $\neq right$ limit