2.4 Limits and Continuity

Definition of Continuity:

A function f is continuous at c if the following 3 conditions are met.

1.
$$f(c)$$
 is defined
2. $\lim_{X \to c} f(x)$ must exist
3. $\lim_{X \to c} f(x) = f(c)$
 $x \to c$

Discontinuities:

$$\lim_{x \to c} f(x) \neq f(c)$$

This is a remarable discontinuity
We (an redefine f(c) so that
$$\lim_{x \to c} f(x) = f(c)$$

1. Determine if the following functions are continuous. If a discontinuity exists determine the type.

AP Calculus

2. Discuss the continuity of the function. $F(x) = \begin{cases} x & x < 0 \\ x^2, & 0 \le x \le 2 \\ 5 & x > 2 \end{cases}$ $possible \ discontinuity: x = 0, x = 2$ $possible \ discontinuity: x = 0, x = 2$ x = 0 x = 0 x = 0 x = 0 x = 2 x

From the basic limit laws f(x) + g(x) and f(x) - g(x) K f(x) for any constant K $f(x) \cdot g(x)$ $\frac{f(x)}{g(x)} \quad \text{if } g(c) \neq 0$

Continuity of Polynomial and Rational Functions: Let P(x) and Q(x) be polynomials.

P(x) is continuous $\frac{P(x)}{Q(x)}$ is continuous for all x=c if $Q(c) \neq 0$ Q(x)

AP Calculus

Continuity of Composite Functions: If g is continuious at x=c, and if f is continuous at x=g(c), then

F(x) = f(g(x)) is continuous at X = C

AP Calculus

Substitution method for evaluating limits:

$$\lim_{x \to c} f(x) = f(c)$$

When the function $f(x)$ is continuous at $X = c$

3. Evaluate
$$\lim_{x \to -1} \frac{2^{x}}{\sqrt{x+5}}$$
 if possible
Numerator 2^{x} continuous at $x=-1$
Denominator $\sqrt{x+5}$ continuous at $x=-1$
 $\therefore \frac{2^{x}}{\sqrt{x+5}}$ is continuous at $x=-1$
 $= \frac{1}{2} \cdot \frac{1}{\sqrt{y}}$
 $= \frac{1}{2} \cdot \frac{1}{\sqrt{y}}$
 $= \frac{1}{2} \cdot \frac{1}{\sqrt{y}}$

4. Evaluate $\lim_{x\to 1} [x]$ if possible. [x] = greatest integer function, $n \in X$

