2.4 Limits and Continuity

$f(x)$ is continuous as there are no breaks or interuptions

Definition of Continuity:
A function f is continuous at c if the following 3 conditions are met.

1. $f(c)$ is defined
2. $\lim _{x \rightarrow c} f(x)$ must exist
3. $\lim _{x \rightarrow c} f(x)=f(c)$

Discontinuities:

$$
\lim _{x \rightarrow c} f(x) \neq f(c)
$$

This is a removable discortinuty
We c an redefine $f(c)$ so that

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

Jump discontinuity

$$
\begin{array}{ll}
\text { Jump discontinuity } & \lim _{x \rightarrow c} \lim _{x} \rightarrow \infty \\
\lim _{x \rightarrow \text { exist }} f(x) \text { does left } & \operatorname{limit} \\
\text { light } & \text { left right or }-\infty
\end{array}
$$

1. Determine if the following functions are continuous. If a discontinuity exists determine the type.
a) $f(x)=\frac{1}{x}$
b) $f(x)=\frac{x^{2}-1}{x-1}=\frac{(x-1)(x+1)}{(x-1)}$
c) $f(x)=\sin x$

at $x=1$
removable
discontinuity

Definition: One Sided Continuity
A function $f(x)$ is called
Left continuous at $x=c$ if $\quad \lim _{x \rightarrow c^{-}} f(x)=f(c)$
Right continuous at $x=c$ if

$$
\lim _{x \rightarrow c^{+}} f(x)=f(c)
$$

2. Discuss the continuity of the function. $F(x)=\left\{\begin{array}{rr}x & x<0 \\ x^{2}, & 0 \leq x \leq 2 \\ 5 & x>2\end{array}\right.$

Laws of Continuity: If $f(x)$ and $g(x)$ are continuous at $x=c$ then the following at $X=2$ functions are also continuous.

From the basic limit laws

$$
f(x)+g(x) \text { and } f(x)-g(x)
$$

$K f(x)$ for any constant K

$$
\begin{aligned}
& f(x) \cdot g(x) \\
& \frac{f(x)}{g(x)} \text { if } g(c) \neq 0
\end{aligned}
$$

Continuity of Polynomial and Rational Functions: Let $P(x)$ and $Q(x)$ be polynomials.
$P(x)$ is continuous
$\frac{P(x)}{Q(x)}$ is continuous for all $x=c$ if $Q(c) \neq 0$

Continuity of Composite Funcions: If g is continuious at $x=c$, and if f is continuous at $x=g(c)$, then

$$
\text { " } F(x)=A(g a x) \text { is curios } d x=C
$$

Substitution method for evaluating limits:

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

When the function $f(x)$ is continuous at $x=c$
3. Evaluate $\lim _{x \rightarrow-1} \frac{2^{x}}{\sqrt{x+5}}$ if possible

Numerator 2^{x} continuous at $x=-1$
Denominator $\sqrt{x+5}$ continuous at $x=-1$
$\therefore \frac{2^{x}}{\sqrt{x+5}}$ is continuous at $x=-1$

$$
\begin{aligned}
\lim _{x \rightarrow-1} \frac{2^{x}}{\sqrt{x+5}} & =\frac{2^{-1}}{\sqrt{-1+5}} \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{4}} \\
& =\frac{1}{2} \cdot \frac{1}{2} \\
& =\frac{1}{4}
\end{aligned}
$$

4. Evaluate $\lim _{x \rightarrow 1} \llbracket x \rrbracket$ if possible. $\llbracket x \rrbracket=$ greatest integer funcion, $n \quad n \leq x$

However the
one sided limes do exist

