2.4 Common Factors of a Polynomial

A factor is any number that will \qquad divide into another number.
factors of 21

$$
3 \times 7=21
$$

factors of 21

$$
1,3,7,21
$$

A common factor is any number that divides into each number in a set. In algebra, we say that an expression that divides into each term of a polynomial is also a common factor
eg 9,15 and 21

$$
9 x^{1}, 15 x^{3}, 21 x^{2}
$$

common factors
$9=1,3,9 \quad 21=1,3,7,21$ $1 x$ and $3 x$

The greatest factor thatdivides into each term is known os the greatest common factor (GCF).
GCF 8 and 12

$$
\begin{array}{ll}
8=2 \cdot 2 \cdot 2 & G C F \\
12=2 \cdot 2 \cdot 3 & G C F \\
2 \cdot 2 & G C F
\end{array}
$$

When we write a polynomial info an expression of the product of factors, we are said to factor the polynomial.

Example 1: Factor the polynomial.
(1) Find the GCF $4 m^{2}+12 m$
of the coefficients
GCF of 4 and 12

$$
\begin{aligned}
& 4=2 \cdot(2) \\
& 12=2 \cdot 2 \cdot 3 \\
& G C F=2 \cdot 2=4
\end{aligned}
$$

(2)

Find the GCF of the variables

$$
\begin{aligned}
& m^{2}=m \\
& m=m \\
& G C F=m
\end{aligned}
$$

(3) Divide each term by the combined CGCF
(4) Write the polynomial as a product
$G C F=4 \mathrm{~m}$

$$
\text { Mr. shaw } \frac{4 m^{2}}{4 m}+\frac{12 m}{4 m}
$$

$$
m+3 \text { lather. }
$$

$$
\begin{array}{ll}
\frac{4 m}{4 m}+3 \text { lather } \\
& m+3.3 \text { factor } \\
6=2.3 \quad 15=3.5
\end{array}
$$

Example 2: Factor each polynomial.

$$
x^{2}=\underset{\text { a) } 6 x^{2}-15 x^{3}}{x}
$$

$x \cdot x \cdot x$
$x G C F=3 x^{2}$

$$
\text { * } \frac{6 x^{2}}{3 x^{2}}-\frac{15 x^{3}}{3 x^{2}}
$$

b) $24 x^{2} y^{3}-18 x^{3} y$

* $(2-5 x)$ other factor

$$
\text { * } 3 x^{2}(2-5 x)
$$

$$
\begin{aligned}
& x^{2} y^{3}=x y \cdot y-y \\
& x^{3} y=x-x y \\
& \frac{24 x^{2} y^{3}}{6 x^{2} y}-\frac{18 x^{3} y}{6 x^{2} y}
\end{aligned}
$$

c) $4 x^{2}-6 x+12$

$$
\text { other var }\left(4 x^{2} y-3 x^{2} y \quad 6 x^{2} y\left(4 y^{2}-3 x\right)\right.
$$

d) $-3 x^{3}-9 x^{2}+12 x$

$$
\begin{aligned}
& \begin{array}{l}
4=2 \cdot 2 \\
6=2 \cdot 3 \quad G C F=2 \\
12=2 \cdot 2 \cdot 3 \\
\\
\frac{4 x^{2}}{2}-\frac{6 x}{2}+\frac{12}{2} \\
\\
\left(2 x^{2}-3 x+6\right) \text { other } \\
\\
2\left(2 x^{2}-3 x+6\right)
\end{array} \quad \text { factor }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
3=3 \\
9=3 \cdot 3 \\
12=2 \cdot 2 \cdot 3 \quad
\end{array} \quad x^{3}=x \cdot x \cdot x \\
& \quad x^{2}=x C F=3 x \\
& x \\
& -\frac{3 x^{3}}{3 x}-\frac{9 x^{2}}{3 x}+\frac{12 x}{3 x} \\
& \left(-x^{2}-3 x+4\right) \text { other factor } \\
& 3 x\left(-x^{2}-3 x+4\right) \\
& \text { or if } G C F=-3 x \\
& =3 x\left(x^{2}+3 x-4\right)
\end{aligned}
$$

