2.4 Limits and Continuity

Definition of Continuity:

A function f is continuous at c if the following 3 conditions are met.
1.
2.
3.

Discontinuities:

1. Determine if the following functions are continuous. If a discontinuity exists determine the type.
a) $f(x)=\frac{1}{x}$
b) $f(x)=\frac{x^{2}-1}{x-1}$
c) $f(x)=\sin x$

Definition: One Sided Continuity
A function $f(x)$ is called
Left continuous at $x=c$ if
Right continuous at $x=c$ if
2. Discuss the continuity of the function. $F(x)=\left\{\begin{array}{cr}x & x<0 \\ x^{2}, & 0 \leq x \leq 2 \\ 5 & x>2\end{array}\right.$

Laws of Continuity: If $f(x)$ and $g(x)$ are continuous at $x=c$ then the following functions are also continuous.

Continuity of Polynomial and Rational Functions: Let $P(x)$ and $Q(x)$ be polynomials.

Continuity of some basic function:
$y=x^{\frac{1}{n}}$

$$
y=\sin x \quad y=\cos x
$$

$y=b^{x}$
$y=\log _{b} x$

Continuity of Composite Funcions: If g is continuious at $x=c$, and if f is continuous at $x=g(c)$, then

Substitution method for evaluating limits:

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

When
3. Evaluate $\lim _{x \rightarrow-1} \frac{2^{x}}{\sqrt{x+5}}$ if possible
4. Evaluate $\lim _{x \rightarrow 1} \llbracket x \rrbracket$ if possible. $\llbracket x \rrbracket=$ greatest integer funcion

AP Calculus

