2.6 Trigonometric Limits

Squeeze Theorem:

1. Show that $\lim_{x\to 0} x \sin \frac{1}{x} = 0$ using the squeeze theorem.

$$-1 \leq \sin \frac{1}{x} \leq 1$$

$$\left| \sin \frac{1}{x} \right| \leq 1$$

$$\left| x \sin \frac{1}{x} \right| \leq |x|$$

$$\left| x \sin \frac{1}{x} \right| \leq |x|$$

$$\left| x \left| x \sin \frac{1}{x} \right| \leq |x| \right|$$

$$\left| x \left| x + x \sin \frac{1}{x} \right| \leq |x| \right|$$

$$\left| x \left| x + x \sin \frac{1}{x} \right| \leq |x| \right|$$

Special Trigonometric Limits

$$\lim_{\theta\to 0}\frac{\sin\theta}{\theta}=1$$

$$\lim_{\theta\to 0}\frac{1-\cos\theta}{\theta}=0$$

AP Calculus

Unit

Circle

Proof of $\lim_{x \to 0} \frac{\sin x}{x} = 1$

 $y = \sin \theta$ $y = \sin \theta$ $\cos \theta = \frac{x}{1}$ $x = \cos \theta$

A circular sector squeezed between two triangles:

X

(cost) 5100)

using the squeeze theorem (l,h) = (l,h) = (l,h)

 $\overline{(1,0)}$

AP Calculus

2. Evaluate the limit $\lim_{x\to 0} \frac{\tan x}{x}$ $\lim_{X\to 0} \frac{\sin x}{\cos x} \cdot \frac{1}{x}$ $\lim_{X\to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x}$ $\lim_{X\to 0} \frac{\sin x}{x} \cdot \frac{1}{x \cos x}$ $\lim_{X\to 0} \frac{\sin x}{x} \cdot \frac{1}{x \cos x}$ 3. Evaluate the limit $\lim_{x\to 0} \frac{\sin 4x}{x}$

$$\begin{aligned}
\lim_{x \to 0} \frac{4\sin 4x}{4x} & \lim_{x \to 0} \frac{4x}{4x} \\
&= 4 \left[\lim_{x \to 0} \frac{\sin 4x}{4x} \right] & 0 = 4 \\
&= 4 \left[\lim_{x \to 0} \frac{\sin 0}{0} \right] \\
&= 4 \left[\lim_{x \to 0} \frac{\sin 0}{0} \right] \\
&= 4 \left[1 \right] \\
&= 4
\end{aligned}$$

 $\lim_{\substack{0 \to 0}} \frac{\sin 0}{0} = 1$ $= 4x \qquad \text{os } x \to 0$ $= 4x \quad -70$

0-70