2.6 Trigonometric Limits

Squeeze Theorem:
If Assume that for $x \neq c$ (in some open interval containing c), $l(x) \leq f(x) \leq u(x)$ and $\lim _{x \rightarrow c} l(x)=\lim _{x \rightarrow c} u(x)=L$

Then $\lim _{x \rightarrow c} f(x)$ exists and $\lim _{x \rightarrow c} f(x)=L$

1. Show that $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$ using the squeeze theorem.

$$
\begin{array}{ll}
-1 \leq \sin \frac{1}{x} \leq 1 & \lim _{x \rightarrow 0}-|x|=0 \\
\left|\sin \frac{1}{x}\right| \leq 1 & \lim _{x \rightarrow 0}|x|=0 \\
-\left|x \sin \frac{1}{x}\right| \leq|x| & \circ \lim _{x \rightarrow 0} x \sin \frac{1}{x}=0
\end{array}
$$

Special Trigonometric Limits

$$
\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1
$$

$$
\lim _{\theta \rightarrow 0} \frac{1-\cos \theta}{\theta}=0
$$

AP Calculus \quad| $\tan \sigma$ | $=\frac{h}{1}$ |
| ---: | :--- |
| $\tan \theta$ | $=h$ |

2. Evaluate the limit $\lim _{x \rightarrow 0} \frac{\tan x}{x}$

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin x}{\cos x} \cdot \frac{1}{x} \\
\lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} \\
{\left[\lim _{x \rightarrow 0} \frac{\sin x}{x}\right] \cdot\left[\lim _{x \rightarrow 0} \frac{1}{\cos x}\right]} \\
1 \cdot 1 \\
=1
\end{gathered}
$$

3. Evaluate the limit $\lim _{x \rightarrow 0} \frac{\sin 4 x}{x}$

$$
\begin{array}{rlr}
& \lim _{x \rightarrow 0} \frac{4 \sin 4 x}{4 x} & \lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1 \\
= & 4\left[\lim _{x \rightarrow 0} \frac{\sin 4 x}{4 x}\right] & \theta=4 x
\end{array} \begin{aligned}
& \text { as } \begin{array}{c}
x \rightarrow 0 \\
4 x \rightarrow 0
\end{array} \\
= & 4\left[\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}\right] \\
= & 4[1] \\
= &
\end{aligned}
$$

