	Fac					FUI	yno	IIIIa	l							
Mond	ay, June	27, 20	22	1:41 PI	VI											

2.6 Factoring Special Polynomials

A. Factoring PERFECT SQUARE TRINOMIALS

A perfect square trinomial has the form:

Perfect square trinomials have the following characteristics:

- a and c must be perfect squares (1, 4, 9, 16, etc...)
- bx is equal to twice the product of the square roots of terms a and c.

$$bx = 2(\sqrt{ax^2})(\sqrt{c})$$

Example 1: Verify that the following trinomials are perfect square trinomials.

$$4x^{2}$$
 and q is a perfect square $\sqrt{9x^{2}}$ and 1 are perfect square $\sqrt{4x^{2}}$ = 3x $\sqrt{1}$ = 1

a)
$$4x^2 + 12x + 9$$
 $= 36$ $= 12$

b)
$$9x^2 - 6x + 1$$

b)
$$9x^2 - 6x + 1$$

 $-3 + -3 = -6$

yes perfect square

 $2(3\times)(1) = 6X$

$$4x^{2}+6x^{2}+6x+9$$
 $2x(2x+3)(2x+3)$
 $(2x+3)(2x+3)$

$$(2X+3)^2$$

$$(3x-1)(3x-1)^2$$

Find a pattern for factoring perfect square trinomials:

$$(a+b)^2 = (a+b)(a+b)$$

= $a^2 + ab + ab + b^2$
= $a^2 + 2ab + b^2$

F&PC 10 Mrs. Shaw

Example 2: Factor the following trinomials

$$a)^{4x^{2}} + 4x + 1$$

$$4x^{2} = 2x$$

$$2(2x)(1) = 4x$$

$$(2x + 1)^{2}$$

$$c)^{4} - 20x + 25x^{2}$$

$$\sqrt{4} = 2$$

$$\sqrt{25x^{2}} = 5x$$

$$2(2)(5x) = 20x$$

$$(2 - 5x)^{2}$$

b)
$$4x^{2}$$
 $2x + 9$
 $2(2x)(3) = 12x$
 $(2x - 3)^{2}$
d) $2x^{2} - 4x + 2$
 $2(x^{2} - 2x + 1)$
 $\sqrt{x^{2}} = x$ $\sqrt{1} = 1$
 $2(x)(1) = 2x$
 $2(x - 1)^{2}$

B. Factoring the DIFFERENCE OF SQUARES

The difference of squares has the form: _

The difference of squares has the following characteristics:

- There are only two terms in the polynomial (binomial)
- Each term is a perfect square
- Second term must be subtracted from the first term

Observe the pattern when expanding two binomials with opposite signs

Example 3: Factor the following binomials

$$\sqrt{16x^2 - 4x} \sqrt{25} = 5 \qquad \sqrt{49x^2 - 121} \sqrt{49x^2} = 7x$$

$$(4x+5)(4x-5)$$

Mrs. Shaw

$$\sqrt{16x^{2} - 25} = 5$$

$$\sqrt{16x^{2} - 4x} = 4x$$

$$\sqrt{149x^{2} - 121}$$

$$\sqrt{149x^{2} - 121}$$

$$\sqrt{121} = 11$$

$$\sqrt{121} = 1$$

$$\sqrt{121} = 1$$