2.7 Limits at Infinity

The notation $x \rightarrow \infty$ indicates that x increases without bound.
The notation $x \rightarrow-\infty$ indicates that x decreases (through negative values) without bound.

1. Discuss the asymptotic behavior of the graph.

Limits at infinity do not always exist.

- $f(x)=\sin x$

$$
\begin{array}{lll}
\text { - } \begin{array}{ll}
f(x)=x^{n} n>0 & f(x)=x^{n} n>0 \\
\mathrm{n} \text { is even } & \mathrm{n} \text { is odd }
\end{array} & f(x)=x^{-n} n>0
\end{array}
$$

2. Calculate $\lim _{x \rightarrow \infty} 5-\frac{2}{x^{2}}$

AP Calculus
3. Calculate $\lim _{x \rightarrow \infty} \frac{4 x^{2}-5 x+7}{10 x+{ }^{3}}$
4. Calculate $\lim _{x \rightarrow \pm \infty} \frac{3 x-2}{\sqrt{2 x^{2}+1}}$

AP Calculus

