2.8 Intermediate Value Theorem

IVT Intermediate Value Theorem:

If $f(x)$ is continuous on a closed interval $[a, b]$ and $f(a) \neq f(b)$, then for every value M between $f(a)$ and $f(b)$, there exists at least one value c in (a, b) such that $f(c)=M$

Existence of Zeros: If $f(x)$ is continuous on $[a, b]$ and if $f(a)$ and $f(b)$ are nonzero and have opposite signs, then $f(x)$ has a zero in (a, b)

Use the intermediate value theorem to show that the polynomial function $f(x)=x^{3}+2 x-1$ has a zero on $[0,1]$
$f(x)$ is continuous; polynomial function
zero $M=0$ Need $f(c)=0$

$$
\begin{array}{rlrl}
{[0,1] \quad a=0} & b=1 \\
f(0)=0^{2}+2(0)-1 & f(1) & =1^{3}+2(1)-1 \\
& = & 2
\end{array}
$$

$$
\begin{aligned}
f(0) & \neq f(1) \\
-1 & \neq 2 \\
f(0) & <M<f(1) \\
-1 & <0<2
\end{aligned}
$$

yes by IVT there will be a zero on $[0,1]$

