3.1 Irrational Numbers

Friday, March 10, 2023 1:59 PM

Unit 3 Exponents Page 1
3.1 Irrational Numbers

Example 1: Classify the following numbers as rational or irrational 4
a) $\sqrt{16}$ Rational
c) $\sqrt[3]{32}$ Irrational
e) $\sqrt{\frac{4}{9}}=\frac{\sqrt{4}}{\sqrt{9}}=\frac{2}{3}=0 . \overline{6} \quad R$
f) $1.276=\frac{1276}{1000} \quad$ Rational
g) $\sqrt[3]{0.12} \quad \operatorname{Ir}(a t i o n a l$
h) $\frac{\pi}{2}$ Irrational

$$
\sqrt{0.25}=\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}
$$

$$
\sqrt{0.25}=\sqrt{\frac{1}{4}}=\frac{\sqrt{1}}{\sqrt{4}}=\frac{1}{2}
$$

1) $\sqrt{\frac{\sqrt{8}}{5}}$ Irrational

$$
\text { j) }-\sqrt{0.25}=\frac{-1}{2}=-0.5
$$

Example 2: Order the following rational and irrational numbers on a number line.

$$
\begin{array}{ccccc}
2.351 & 4.243 & \sqrt[3]{13} & \binom{\sqrt{9}}{3} & \begin{array}{l}
\sqrt[4]{27} \\
2.28 \\
\hline
\end{array} \\
\hline
\end{array}
$$

Write the above radicals in order of least to greatest.

$$
\sqrt[3]{-5}, \sqrt[4]{27}, \sqrt[3]{13}, \sqrt{9}, \sqrt{18}
$$

Example 3: Why are $\sqrt[3]{27}$ and $\sqrt{64}$ rational numbers but $\sqrt[3]{13}$ and $\sqrt{8}$ are irrational numbers?

$$
\left.\begin{array}{l}
\sqrt[3]{27}=3 \rightarrow \text { perfect cube } \\
\sqrt[3]{64}=8 \rightarrow \text { perfect square } \\
\sqrt{\text { numbers }} \quad \\
\sqrt[3]{13} \approx 2.3513 \ldots \text { not perfect } \\
\sqrt{8} \approx 2.8284 \mathrm{~m} \ldots
\end{array}\right\} \text { Irrational. }
$$

Mrs. Shaw
F \& PC 10

Practice: p. 211 \#3-5, 9a, 10a, 11, 15, 18ab

