3.4 Fractional Exponents

Wednesday, March 15, 2023 1:27 PM

Unit 3 Exponents Page 1

3.4 Fractional Exponents and Radicals

Radical Form:
Exponential Form:

Use a calculator to complete the following tables.
$x^{\frac{1}{2}}=\sqrt{x}$

x	$y^{\frac{1}{2}}$
1	$1^{1 / 2}=1$
4	$4^{1 / 2}=2$
9	$9^{1 / 2}=3$
16	4
25	5
36	6

x	$x^{\frac{1}{3}}$
1	$1^{1 / 3}=1$
8	$8^{1 / 3}=2$
27	$27^{1 / 3}=3$
64	4
125	5
216	6

Notice a pattern :

In general, $x^{\frac{\sqrt[k]{*}}{}}$ as a radical becomes $\sqrt[{\sqrt[1]{x}}]{ }$
And vice versa, $\sqrt[n]{x}$ equals $x^{\frac{1}{n}}$.

Example 1: Write as a radical and then evaluate.
a) $1000^{\frac{1}{3}}$
b) $0.25^{\frac{1}{2}}$
c) $(-64)^{\frac{1}{1}}$
d) $\left(\frac{16}{81}\right)^{\frac{1}{4}}$

$4 \longdiv { \frac { 1 6 } { 8 1 } }$
$=-4$
$=\frac{\sqrt[4]{16}}{\sqrt[4]{81}}$
${ }_{\text {FPC } 10}=\frac{2}{3}$
Mrs. Shaw

$$
\begin{aligned}
& \frac{5}{10} \div 5 \\
= & 1 / 2
\end{aligned}
$$

Powers with Rational Exponents
When \boldsymbol{m} and \boldsymbol{n} are natural numbers, and \boldsymbol{x} is a rational number:

$$
x^{\frac{m}{n}}=(\sqrt[n]{x})^{\frac{m}{n}} \quad 0 \checkmark
$$

Example 2: Write $26^{\frac{2}{5}}$ in radical form in two different ways.
" $(\sqrt[5]{26})^{2}$

$$
\text { iii } \quad \sqrt[5]{26^{2}}
$$

Example 3: Write in exponential form.
a) $\sqrt[2]{3^{5}} 3^{\frac{5}{2}}$
b) $(\sqrt[3]{25})^{2}$
$25^{\frac{2}{3}}$

Example 4: Write in radical form and then evaluate.

$$
\begin{aligned}
& \text { a) } 8^{\frac{2}{3}} \\
& =(\sqrt[3]{8})^{2} \\
& =(2)^{2} \\
& =4 \\
& \begin{array}{l}
\frac{0.4 \times 10}{101(2)} \\
1 \times 10 \\
\frac{4}{10}=\frac{2}{5}
\end{array} \\
& \left(\sqrt[61]{81^{\frac{3}{4}}}\right)^{3} \\
& (3)^{3} \\
& 27 \\
& \text { Practice: p. } 227 \text { \# 3-8, 10-12, } 16 \\
& \text { Mrs. Shaw } \\
& \text { d) } 0.04^{\frac{3}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\left(\sqrt[2]{ } \frac{4}{100 \div 4} \div 4\right. & \frac{8 \div 8}{1000 \div 8} \\
\left(\sqrt[2]{\frac{1}{25}}\right)^{3} & \frac{1}{125} \\
\frac{(\sqrt{1})^{3}}{(\sqrt{25})^{3}} &
\end{array} \\
& \begin{array}{l}
\frac{1^{3}}{5^{3}} \\
\frac{1}{125}
\end{array}
\end{aligned}
$$

