| 3.4 Part 1 Ne          | eW    |    |  |  |  |  |  |  |  |  |
|------------------------|-------|----|--|--|--|--|--|--|--|--|
| Tuesday, June 27, 2023 | 11:22 | AM |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |
|                        |       |    |  |  |  |  |  |  |  |  |

## 3.4 Equations and Graphs of Polynomial Functions: Part 1

Find the zeros of the function

Find the x-intercepts of the function

$$f(x) = \frac{1}{2}(x-1)(x+2)(x-3)$$

$$2(0) = 2\frac{1}{2}(x-1)(x+2)(x-3)$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X + 2)(X - \frac{3}{4})$$

$$0 = (X - 1)(X - 1)(X - \frac{3}{4})$$

$$0 = (X - 1)(X - 1)(X - \frac{3}{4})$$

$$0 = (X - 1)(X - 1)(X - \frac{3}{4})$$

$$0 = (X - 1)(X - 1)(X - \frac{3}{4})$$

$$0 = (X - 1)(X - 1)(X - \frac{3}{4})$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

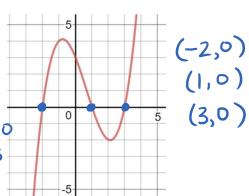
$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$


$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1)$$

$$0 = (X - 1)(X - 1)(X - 1$$

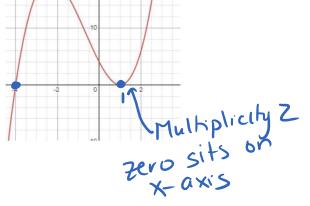


The zeroes of a polynomial function are the X-intercepts of the graph of the function.

Multiplicity of a zero/root: how many times a particular number is a zero for a given polynomial.

$$f(x) = (x - 1)^2(x + 4)$$

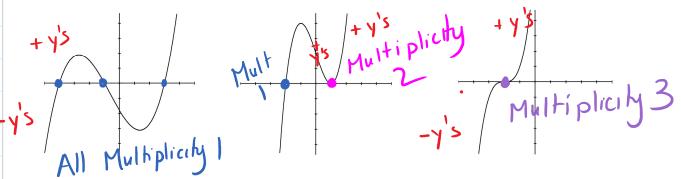
$$0 = (x-1)^{2}(x+4)$$


$$0 = (x-1)^{2}(x+4)$$

$$x-1=0 \quad x+4=0$$

$$x=1 \quad x=-4$$
Same Zero

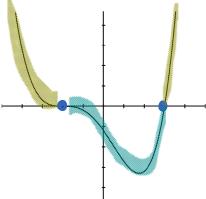
$$X-1=0$$
 $X=1$ 


$$X+4=0$$
  
 $X=-4$ 

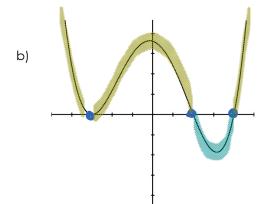


Mrs. Shaw

PC 12


To determine the multiplicity of a zero/root from a graph, consider the following:



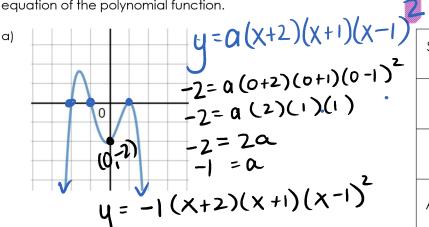

- Zeroes of **ODD** multiplicity change sign at the zero.
- Zeroes of **EVEN** multiplicity do not change sign at the zero.

Example 1: For each graph, state the x-intercepts, the intervals where the function is positive and negative, whether the zeroes are of multiplicity 1,2, or 3.

a)



| x-intercepts      | X=-2 $(-2,0)(3,0)$   |
|-------------------|----------------------|
| Multiplicity      | X=-2 Mult 3 X=3 Mult |
| Positive interval | x<-2 x>3             |
| Negative interval | -2 < X < 3           |




|                   | Y3             | 1-3.1          | 0)     |
|-------------------|----------------|----------------|--------|
| x-intercepts      | X=2 X=9        | (20            | 5 (4.  |
| Multiplicity      | X=-3 Mult 2    | X = 2<br>X = 4 | 7 Mult |
| Positive interval | x4-3 -34       | XZ2            | ×7'    |
|                   | X<2 ×≠         | -3             | ×>4    |
| Negative interval | 2 <b>Z</b> X Z | Ц              |        |
|                   | 7272           | 7              | •      |

Mrs. Shaw

PC 12

**Example 2:** For the following polynomial functions determine: the sign of the leading coefficient, the x-intercepts, multiplicity of the zeros, and an additional point. Use the information to find the equation of the polynomial function.



| Sign of Leading<br>Coefficient | Negative                    |
|--------------------------------|-----------------------------|
| x – intercepts                 | X = -2<br>X = -1 $X = 1$    |
| Multiplicity                   | X=1 Mult Z<br>X=-2 X=-1? Mu |
| Additional Point               | (0,-2)                      |
|                                | /                           |

| b) | $y=a(x+1)^{2}(x)(x-2)$               |
|----|--------------------------------------|
|    | 5=a(1+1)2(1)(1-2)                    |
|    | 5 = a(4)(1)(-1)<br>$5 = -4\alpha$    |
|    | $\frac{5-4\omega}{-5/4}=0$           |
|    | $y = -\frac{5}{4} x (x+1)^{2} (x-2)$ |
|    | J 4                                  |

| Sign of Leading<br>Coefficient | 0                               |
|--------------------------------|---------------------------------|
| x – intercepts                 | X=-1<br>X=0                     |
| Multiplicity                   | X=-1 Mult 2-<br>others are Mult |
| Additional Point               | (1.5)                           |

c) A degree 4 polynomial function has zeroes of -4, 1 (both multiplicity 1) and -2 (multiplicity 2). The

constant term of the function is -3.

$$y = a(x+4)(x-1)(x+2)$$

$$-3 = a(0+4)(0-1)(0+2)^{2}$$

$$-3 = a(4)(-1)(4)$$

$$-3 = -16a$$

$$y = \frac{3}{16}(x+4)(x-1)(x+2)^{2}$$

$$y = \frac{3}{16}(x+4)(x-1)(x+2)^{2}$$

| Sign of Leading<br>Coefficient |                                     |
|--------------------------------|-------------------------------------|
| x – intercepts                 | X=-4<br>X=1<br>X=-2                 |
| Multiplicity                   | x=-4 /x=-2<br>x=1<br>Mult 1 /Mult 2 |
| Additional Point               | (0,-3)                              |

**Practice**: p.147 # 3, 4, 14 and worksheet

Mrs. Shaw

PC 12