AP Calculus
3.9 Related Rates

Given a rate of change of one quantity we are asked to find the rate of change of a related quantity.

Example \#1
If $x y^{3}=24$ and $\frac{d y}{d t}=4$ find $\frac{d x}{d t}$ when $\mathrm{y}=3$.

$$
\begin{aligned}
x \cdot 3 y^{2} \frac{d y}{d t}+y^{3} \cdot 1 \frac{d x}{d t} & =0 \\
\frac{8}{9} \cdot 3(3)^{2} \cdot 4+(3)^{3} \cdot \frac{d x}{d t} & =0 \\
27 \frac{d x}{d t} & =-96 \\
\frac{d x}{d t} & =-\frac{96}{27}=-\frac{32}{9}
\end{aligned}
$$

$$
\begin{array}{r}
\text { if } y=3 \text { find } x \\
x y^{3}=24 \\
x(3)^{3}=24 \\
x=\frac{24}{27}=\frac{8}{9}
\end{array}
$$

1. Identify information, Assign variables, Write an equation that $\begin{aligned} & \text { relates the quant ties }\end{aligned}$
2. Use implicit differentiation with respect to time
3. Sub in any given values and solve for the rate specified.

A spherical snowball is melting in such a way that its volume is decreasing at a rate of $1 \mathrm{~cm}^{3} / \mathrm{min}$. At what rate is the radius decreasing when the radius is 5 cm .

$$
\begin{aligned}
& V=\frac{4}{3} \pi r^{3} \quad V= \\
& \frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t} \\
&-1=\frac{4}{3} \pi(33)(5)^{2} \frac{d r}{d t} \\
& \frac{-1}{4 \pi(25)}=\frac{d r}{d t}
\end{aligned}
$$

$$
V=\text { Volume sphere }
$$

$$
\frac{d V}{d t}=-1 \mathrm{~cm}^{3} / \mathrm{min}
$$

$$
r=\text { radius }
$$

$$
\frac{d r}{d t}=\frac{-1}{100 \pi} \mathrm{~cm} / \mathrm{min}
$$

find $\frac{d r}{d t}$ when $r=5 \mathrm{~cm}$

Example \#3
A water tank is built in the shape of a circular cone with height 5 m and diameter 6 m at the top. Water is being pumped into the tank at a rate of $16 \mathrm{~m}^{3} / \mathrm{min}$. Find the rate at which the water level is rising

$$
\begin{aligned}
& \text { when the water is } 2 \mathrm{~m} \text { deep.height diameter } \\
& V=\frac{1}{3} \pi r^{2} h \quad \begin{array}{ll}
h=5 & \begin{array}{l}
d=6 \\
r=3
\end{array}
\end{array} \quad \begin{array}{l}
d V \\
d t
\end{array} \quad 1.6 \mathrm{~m}^{3} / \mathrm{min} \\
& V=\frac{1}{3} \pi r^{2} h \\
& V=\frac{1}{3} \pi\left(\frac{3}{5} h\right)^{2} h \\
& \frac{h}{r}=\frac{5}{3} \quad \text { find } \frac{d h}{d t} \text { when } h=2 \\
& V=\frac{1}{3} \pi\left(\frac{9}{25} h^{2}\right) h \\
& V=\frac{3 \pi}{25} h^{3} \\
& \frac{d V}{d t}=\frac{3 \pi}{25} \cdot 3 h^{2} \cdot \frac{d h}{d t} \\
& \frac{d h}{d t}=\frac{10}{9 \pi} \mathrm{~m} / \mathrm{min} \\
& 1.6=\frac{3 \pi}{25} .3(2)^{2} \frac{d h}{d t} \\
& \frac{1.6(25)}{3 \pi(3)(4)}=\frac{d h}{d t}
\end{aligned}
$$

A spotlight on the ground shines on a wall 10m away. A 2 m tall walks from the spotlight toward the wall at a speed of $1.2 \mathrm{~m} / \mathrm{s}$. How fast is his shadow on the wall decreasing when he is 3 m from the wall?

$y=$ size of shadow
$x=$ distance walked
$\frac{d x}{d t}=1.2 \mathrm{~m} / \mathrm{s}$ speed walking find $\frac{d y}{d t}$ when $x=7$ 3 from the wall means he walked Tm

$$
\begin{aligned}
\frac{\text { Big }}{\text { small }} \quad \begin{aligned}
\frac{y}{2} & =\frac{10}{x} \\
x y & =20 \\
y & =\frac{20}{x}=20 x^{-1} \\
\frac{d y}{d t} & =20(-1) x^{-2} \frac{d x}{d t} \\
\frac{d y}{d t} & =\frac{-20}{x^{2}} \cdot \frac{d x}{d t} \\
\frac{d y}{d t} & =\frac{-20}{7^{2}} \cdot(1.2) \\
d y / d t & =\frac{-24}{49} \mathrm{~m} / \mathrm{s}
\end{aligned},=\frac{1}{2 l}
\end{aligned}
$$

[Type text]

Sonya and Isaac are in boats located at the center of a lake. At time $t=0$, Sonya begins travelling south at a speed of 32 mph . At the same time Isaac takes off, heading east at a speed of 27 mph . At what rate are they separating after 12 mins .
$x=$ distance Isaac travelled
Isaac
$y=$ distance Sonya travelled
$r=$ distance between Isaac and Sonya

$$
\frac{d y}{d t}=32 \mathrm{mi} / \mathrm{h} \quad \frac{d x}{d t}=27 \mathrm{mi} / \mathrm{h}
$$

find $\frac{d r}{d t}$ when $t=12 \mathrm{~min}=\frac{12}{60} \mathrm{hr}=\frac{1}{5} \mathrm{~h}$

$$
\begin{gathered}
x^{2}+y^{2}=r^{2} \\
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 r \frac{d r}{d t} \\
x \frac{d x}{d t}+y \frac{d y}{d t}=r \frac{d r}{d t} \\
(5.4) 27+6.4(32)=\sqrt{70.12} \frac{d r}{d t} \\
\frac{350.6}{\sqrt{70.12}}=d r / d t \\
d v / d t=41.869 \mathrm{mi} / \mathrm{hr}
\end{gathered}
$$

find x
find y

$$
\begin{array}{ll}
x=27\left(\frac{1}{5}\right) & y=32\left(\frac{1}{5}\right) \\
x=\frac{27}{5}=5.4 \mathrm{mi} & y=\frac{32}{5}=6.4 \mathrm{mi}
\end{array}
$$

$$
\text { find } r(5.4)^{2}+(6.4)^{2}=r^{2}
$$

$$
\begin{array}{r}
70.12=r^{2} \\
r=\sqrt{70.12}
\end{array}
$$

Example \#6
An observer watches a rocket launch using a telescope. The launching pad is 6 km away. At a certain time the angle θ between the telescope and the ground is equal to $\frac{\pi}{3}$ and is changing at a rate of 0.9 $\mathrm{rad} / \mathrm{min}$. What is the rocket's velocity at that moment?

$$
\begin{aligned}
& \tan \theta=\frac{h}{6} \\
& \sec ^{2} \theta \frac{d \theta}{d t}=\frac{1}{6}(1) \frac{d h}{d t} \\
& \left(\sec \frac{\pi}{3}\right)^{2}(.9)=\frac{1}{6} \frac{d h}{d t} \\
& 6\left(2^{2}\right)(.9)=\frac{d h}{d t}
\end{aligned}
$$

\square

$$
\sec \frac{\pi}{3}=\frac{1}{\cos \pi / 3}=\frac{1}{\frac{1}{2}}
$$

