3.9 Related Rates

Given a rate of change of one quantity we are asked to find the rate of change of a related quantity.

Example #1

If
$$xy^3 = 24$$
 and $\frac{dy}{dt} = 4$ find $\frac{dx}{dt}$ when y=3.

$$x \cdot 3y^2 \frac{dy}{dt} + y^3 \cdot 1 \frac{dx}{dt} = 0$$

$$\frac{8.3(3)^2.4 + (3)^3.0 dx}{9} = 0$$

$$\frac{dx}{dt} = -96$$

$$\frac{dx}{dt} = -\frac{96}{27} = -\frac{32}{9}$$

if
$$y=3$$
 find x
 $xy^3=24$
 $x(3)^3=24$
 $x=24=8$
 $x=24=9$

- 1. Identify information, Assign variables, Write an equation that relates the quantities
- 2. Use implicit differentiation with respect to time
- 3. Sub in any given values and solve for the rate specified.

Example #2

A spherical snowball is melting in such a way that its volume is decreasing at a rate of $1 cm^3/min$. At what rate is the radius decreasing when the radius is 5 cm.

$$V = \frac{4\pi}{3}\pi r^{3}$$

$$\frac{dV}{dt} = \frac{4\pi}{3}(3r^{2})\frac{dr}{dt}$$

$$- | = \frac{4\pi}{3}(3)(5)^{2}\frac{dr}{dt}$$

$$\frac{-1}{4\pi(25)} = \frac{dr}{dt}$$

$$V = \frac{4}{3} \text{ Tr}^{3}$$

$$V = \text{Volume sphere}$$

$$V = \frac{dV}{dt} = -\frac{1}{3} \text{ cm/min}$$

$$V = \frac{4}{3} \text{ Tr}^{3}$$

$$V = \text{Volume sphere}$$

$$V = \frac{dV}{dt} = -\frac{1}{4} \text{ Tr}^{3}$$

$$V = \frac{4}{3} \text{ Tr}^{3}$$

Example #3

A water tank is built in the shape of a circular cone with height 5m and diameter 6m at the top. Water is being pumped into the tank at a rate of $1.6m^3/min$. Find the rate at which the water level is rising

being pumped into the tank at a rate of 1.6m²/min. Find the water when the water is 2m deep. height diameter
$$\frac{dV}{dt} = 1.6 \text{ m}^3/\text{min}$$
 $V = 1 \text{ Tr} V^2 h$
 $V = 3 \text{ Tr} \left(\frac{3}{5}h^2\right) h$
 $V = \frac{1}{3} \text{ Tr} \left(\frac{3}{25}h^2\right) h$
 $V = \frac{1}{3} \text{ Tr} \left(\frac{3}{25}h^2\right) h$
 $V = \frac{3}{3} \text{ Tr} \left(\frac{3}{25}h^2\right) h$

$$\frac{h}{r} = \frac{5}{3}$$

$$3h = 5r$$

$$\frac{dV}{dt} = \frac{3\pi}{35} \cdot 3h^{2} \cdot \frac{dh}{dt}$$

$$\frac{dh}{dt} = \frac{10}{9\pi}$$

$$\frac{1.6}{3\pi} \cdot 3(2)^{2} \frac{dh}{dt}$$

$$\frac{1.6(25)}{3\pi} = \frac{dh}{dt}$$

Example #4

man

A spotlight on the ground shines on a wall 10m away. A main 2m tall walks from the spotlight toward the wall at a speed of 1.2 m/s. How fast is his shadow on the wall decreasing when he is 3m from the wall? V = Si 2C Of Shadow

X= distance walked

dX= 1.2 m/s speed walking

dt

find dy when X= 7

at show the wall means
he walked 7 m

Big small
$$\frac{y}{2} = \frac{10}{x}$$

$$xy = 20$$

$$y = \frac{20}{x} = \frac{20x^{-1}}{20x^{-1}}$$

$$\frac{dy}{dt} = \frac{20(-1)x^{-2}}{x^{2}} \frac{dx}{dt}$$

$$\frac{dy}{dt} = -\frac{20}{x^{2}} \cdot \frac{dx}{dt}$$

Sonya and Isaac are in boats located at the center of a lake. At time t=0, Sonya begins travelling south at a speed of 32mph. At the same time Isaac takes off, heading east at a speed of 27 mph. At what rate are they separating after 12 mins.

LSGac $\chi^2 + \chi^2 = r^2$ 2x dx + 2y dy = 2r dr
dt $x\frac{df}{dx} + \lambda \frac{df}{d\lambda} = \lambda \frac{df}{d\lambda}$ $(5.4)27 + 6.4(32) = \sqrt{70.12} \frac{dr}{dt}$ 350.6 = dv/1t dy/1=41.869 mi/hr

X= distance Isaac travelled y=distance Sonya travelled r = distance between Isaac and Sonya $\frac{dy}{dt} = 32 \frac{mi}{h}$ $\frac{dx}{dt} = 27 \frac{mi}{h}$ find $\frac{dr}{dt}$ when $t = 12 \text{ min} = \frac{12}{60} \text{ hr} = \frac{1}{5} \text{ hr}$ find y find X y=32(1) X= 27(=) $\chi = \frac{27}{5} = 5.4 \text{ mi}$ $\gamma = \frac{32}{5} = 6.4 \text{ mi}$ find $r(5.4)^2 + (6.4)^2 = r^2$ $70.12 = r^2$ r= 170.17

Example #6

An observer watches a rocket launch using a telescope. The launching pad is 6km away. At a certain time the angle θ between the telescope and the ground is equal to $\frac{\pi}{3}$ and is changing at a rate of 0.9 rad/min. What is the rocket's velocity at that moment?

B
$$\sqrt{\frac{1}{3}}$$

Sec $\sqrt{\frac{1}{3}}$: $\frac{1}{\cos \sqrt{3}}$: $\frac{1}{2}$