4.1 Linear Approximation

Friday, June 4, $2021 \quad 12: 53$ PM

AP Calculus
4.1 Linear Approximation

Linear Approximation: Tangent Line Approximation

Equation of a line: $y-y_{1}=m\left(x-x_{1}\right)$ At the point $\left(x_{1}, y_{1}\right)$ with a slope of m
Tangent Line:
point slope

$$
y-f(a)=f^{\prime}(a)(x-a)
$$

$(a, f(a)) \quad f^{\prime}(a)$

Slope of tangent line

As $\Delta x \rightarrow 0 \quad \Delta y \approx d y$ then the tangent line is a good approximation for $f(x)$.

$$
\begin{aligned}
& \Delta x \rightarrow 0 \quad d y \approx \Delta y=\Delta f \\
& \frac{d y}{d x}=f^{\prime}(a) \\
& d x=\Delta x \\
& \text { as } \Delta x \rightarrow 0 \\
& d y \approx \Delta y \\
& d y=f^{\prime}(a) d x \\
& \Delta y=f^{\prime}(a) \Delta x \\
& \Delta f=f^{\prime}(a) \Delta x
\end{aligned}
$$

AP Calculus

1. Let $f(x)=\sqrt{1+x}$ use a=8 and $\Delta x=1$

$$
f(x)=(1+x)^{\frac{1}{2}}
$$

$$
\begin{aligned}
& \text { a) Find an approximation for } \Delta f \\
& f^{\prime}(x)=\frac{1}{2}(x+1)^{\frac{-1}{2}} \cdot(1) \\
& f^{\prime}(8)=\frac{1}{2}(8+1)^{\frac{-1}{2}} \\
& f^{\prime}(8)=\frac{1}{2}(9)^{-\frac{1}{2}} \\
& f^{\prime}(8)=\frac{1}{2}\left(\frac{1}{3}\right) \\
& f^{\prime}(8)=\frac{1}{6}
\end{aligned}
$$

$$
\Delta f=f^{\prime}(a) \Delta x
$$

$$
\begin{aligned}
& \Delta f=f^{\prime}(8)(1) \\
& \Delta f=\frac{1}{6}(1) \\
& \Delta f=\frac{1}{6}
\end{aligned}
$$

b) Find the actual change in f

$$
\Delta f=f(a+\Delta x)-f(a)
$$

$$
\begin{aligned}
& \Delta f=f(8+1)-f(8) \\
& \Delta f=f(9)-f(8) \\
& \Delta f=\sqrt{1+9}-\sqrt{1+8} \\
& \Delta f=\sqrt{10}-\sqrt{9} \\
& \Delta f=\sqrt{10}-3 \\
& \Delta f=0.1622776602
\end{aligned}
$$

AP Calculus
c) Find the error

Error $=\mid$ Actual $\Delta f-$ Approximate $\Delta f \mid$

$$
\begin{aligned}
& \text { Error }=\left|0.1622776602-\frac{1}{6}\right| \\
& \text { Error }=0.0043890065
\end{aligned}
$$

d) Find the percentage error Percentage Error $=\left|\frac{\text { Error }}{\text { Actual } \Delta f}\right| 100 \%$

$$
\begin{aligned}
& 7_{\text {error }}=\left|\frac{0.0043890065}{0.1622776602}\right| 100 \% \\
& \text { \% error }=2.7046 \%
\end{aligned}
$$

2. Actual $\Delta f=(16.5)^{\frac{1}{4}}-(16)^{\frac{1}{4}}$. Find an approximation for Δf and find the error.

$$
\text { Actual } \Delta f=f(a+\Delta x)-f(a)
$$

Approximate $\Delta f=f^{\prime}(a) \Delta x$

$$
\begin{aligned}
& a=16 \\
& \Delta x=0.5 \\
& f(x)=x^{1 / 4} \\
& f^{\prime}(x)=\frac{1}{4} x^{-\frac{3}{4}} \\
& f^{\prime}(16)=\frac{1}{4}(16)^{-3 / 4} \\
& f^{\prime}(16)=\frac{1}{4}\left(\frac{1}{8}\right) \\
& f^{\prime}(16)=\frac{1}{32}
\end{aligned}
$$

$$
\Delta f=f^{\prime}(16)(0.5)
$$

$$
\Delta f=\frac{1}{32} \cdot \frac{1}{2}
$$

$$
\Delta f=\frac{1}{64}
$$

AP Calculus

\[

\]

4. Use linear approximation to find a value for $(27.03)^{\frac{1}{3}}$

Find $L(x)$, then find $L(27.03)$

$$
\begin{array}{ll}
a=27 & L(x)=f^{\prime}(a)(x-a)+f(a) \\
\Delta x=0.03 & L(x)=\frac{1}{27}(x-27)+3 \\
f(x)=x^{\frac{1}{3}} & L(x)=\frac{1}{27} x-1+3 \\
f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} & L(x)=\frac{1}{27} x+2 \\
f^{\prime}(27)=\frac{1}{3}(27)^{-2 / 3} & \\
f^{\prime}(27)=\frac{1}{3}\left(\frac{1}{9}\right) & L(27.03)=\frac{1}{27}(27.03)+2 \\
f^{\prime}(27)=\frac{1}{27} & L(27.03)=3.00 T \\
f(27)=27^{1 / 3} &
\end{array}
$$

