4.1 Angles and Angle Measure

4.1 Angles and Angle Measure n

Angles in standard position have their center at the origin \square $(0,0)$ \qquad and the \qquad on the positive x -axis.

Angles are measured in \qquad or \qquad .

An angle that has a measure of 1 radian is an angle in which the length of the radius = length of the arc of the angle

	Degrees	Radian Measure
Full rotation of a circle	360°	2π
Half rotation of a circle	180°	π
$1 / 4$ rotation of a circle	90°	$\pi / 2$

Note: Angles without units are considered radians.

Pre-Calculus 12

Conversion factor degrees and radians:
π radians $=180^{\circ}$
degrees \longrightarrow radians

$$
\text { degrees }\left(\frac{\pi}{180^{\circ}}\right)=\text { radians }
$$

$$
\begin{aligned}
& \text { radians } \rightarrow \text { degrees } \\
& \text { radians }\left(\frac{180^{\circ}}{\pi}\right)=\text { degrees }
\end{aligned}
$$

Ex. \#1: Convert each angle into degrees or radian. Draw each angle in standard position
(a) 162°

$$
\begin{aligned}
162^{\circ} & \left(\frac{\pi}{180^{\circ}}\right) \\
& =\frac{162 \pi}{180} \\
& =\frac{81 \pi}{90} \\
& =\frac{9 \pi}{10}
\end{aligned}
$$

(b) -150°

$$
\begin{aligned}
-150^{\circ} & \left(\frac{\pi}{180^{\circ}}\right) \\
& =-\frac{150 \pi}{180} \\
& =\frac{-15 \pi}{18} \\
& =-\frac{5 \pi}{6}
\end{aligned}
$$

$\frac{6 \pi}{6}=\pi$

$$
\begin{gathered}
\frac{4 \pi}{3}\left(\frac{180^{\circ}}{7}\right) \\
\frac{4\left(1 \% 0^{\circ}\right)}{8} \\
4\left(60^{\circ}\right) \\
240^{\circ}
\end{gathered}
$$

(d) 2.46 radians

Pre-Calculus 12
Coterminal Angles: Angles that have the same terminal arm when in standard
Draw an angle of 20° and one of 380°.
 position.

What do you notice about the two angles? same terminal arm We can find coterminal angles by Add 360° or 2π to the angle

Ex. \#2: Find two coterminal angles for each given angle. Express your answer in general form.

$$
\begin{array}{lll}
\text { (a) } 150^{\circ} \\
\theta=150^{\circ}+360^{\circ} & \theta=150^{\circ}-360^{\circ} \\
\theta=510^{\circ} & & \\
& \theta=-210^{\circ} \\
& \theta=150^{\circ}+360^{\circ} n \quad n \in I \quad n \neq 0 \\
& \text { or } \theta=150^{\circ} \pm 360^{\circ} n \quad n \in N
\end{array}
$$

(b) $\frac{\pi}{3}$

$$
\begin{array}{ll}
\theta=\frac{\pi}{3}+2 \pi & \theta=\frac{\pi}{3}-2 \pi \\
\theta=\frac{\pi}{3}+\frac{6 \pi}{3} & \theta=\frac{\pi}{3}-\frac{6 \pi}{3} \\
\theta=\frac{7 \pi}{3} & \theta=-\frac{5 \pi}{3}
\end{array}
$$

$$
\theta=\frac{\pi}{3}+2 \pi n \quad n \in I \quad n \neq 0
$$

Arc Length of a Circle:
Arc Length is the length of the \qquad arc that subtends the central angle.

$$
\begin{gathered}
\frac{\text { arc length }}{\text { circumference }}=\frac{\text { central angle }}{\text { full rotation }} \\
2 \pi r \\
360^{\circ} \text { or } 2 \pi
\end{gathered}
$$

Arc length in degrees

$$
\frac{\operatorname{arclength}}{2 \pi r}=\frac{\theta}{360^{\circ}}
$$

Arc length in radians

$$
\frac{a r c l e n g t h}{2 \pi r}=\frac{\theta}{2 \pi}
$$

Ex.\#3: Find the arc length of the sector that is formed if
(a) The central angle is 120° and the radius of the circle is 15 cm .

$$
\left\{\begin{array}{l}
120^{\circ} x \frac{x}{2 \pi(15)}=\frac{120^{\circ}}{360^{\circ}} \\
15 \pi\left(\frac{x}{2 \pi(15)}\right)=\frac{120^{\circ}}{360^{\circ}}(2 \pi)(15)
\end{array}\right.
$$

$$
x=\frac{120^{\circ}}{360^{\circ}} \cdot 2 \pi(15)
$$

$$
x=\frac{120^{\circ}}{360^{\circ}} \cdot 30 \pi=31.4 \mathrm{~cm}
$$

(b) The central angle is $\frac{3 \pi}{4}$ and the radius of the circle is 8 units.

$$
x=\frac{1^{2}}{36 \beta_{1}} \cdot 30^{10}=10 \pi
$$

$$
\begin{aligned}
\frac{x}{2 \pi(8)} & =\frac{3 \pi / 4}{2 \pi} \\
2 \pi(t)\left(\frac{x}{2+1(8)}\right) & =\frac{3 \pi / 4}{2 \pi}(2 \pi)(8) \\
x & =\frac{3 \pi}{4} \cdot 8 \\
x & =6 \pi \quad x=18.85 \text { units }
\end{aligned}
$$

