Name: \qquad
4.1 Linear Approximation

$$
L(x)=f^{\prime}(a)(x-a)+f(a)
$$

1. $f(x)=x \sqrt{5-x}$
a) Approximate $f(x)$ by its linearization $L(x)$ at $(1,2)$
b) Graph $f(x)$ and $L(x)$ on the same grid

c) Complete the table (use 4 decimal places)

x	0.5	0.9	1	1.1	1.5
$f(x)$					
$L(x)$					
$L(x)-f(x)$					

2. $f(x)=x \sqrt{5-x}$
a) Approximate $f(x)$ by its linearization $L(x)$ at $(4,4)$
b) Graph $f(x)$ and $L(x)$ on the same grid

c) Complete the table (use 4 decimal places)

x	3.5	3.9	4	4.1	4.5
$\mathrm{f}(\mathrm{x})$					
$\mathrm{L}(\mathrm{x})$					
$\mathrm{L}(\mathrm{x})-\mathrm{f}(\mathrm{x})$					

3. Which $L(x)$ is a better approximation for $f(x)$ at small equal distances? Explain your answer; refer to data or information you have on this sheet.
