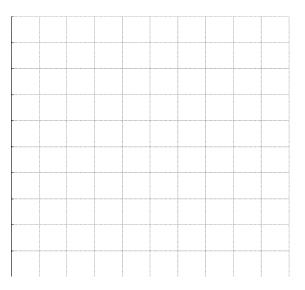

4.1 Linear Approximation

$$L(x) = f'(a)(x - a) + f(a)$$

1.
$$f(x) = x\sqrt{5-x}$$

- a) Approximate f(x) by its linearization L(x) at (1,2)
- b) Graph f(x) and L(x) on the same grid



c) Complete the table (use 4 decimal places)

Х	0.5	0.9	1	1.1	1.5
f(x)					
L(x)					
L(x) - f(x)					

$$2. \quad f(x) = x\sqrt{5-x}$$

- a) Approximate f(x) by its linearization L(x) at (4,4)
- b) Graph f(x) and L(x) on the same grid

c) Complete the table (use 4 decimal places)

Х	3.5	3.9	4	4.1	4.5
f(x)					
L(x)					
L(x) - f(x)					

3. Which L(x) is a better approximation for f(x) at small equal distances? Explain your answer; refer to data or information you have on this sheet.