4.2 Extreme Values

Monday, June 14, 2021 10:42 AM

AP Calculus
4.2 Extreme Values

Extreme Values on an Interval: Let $f(x)$ be a function on an interval, let "a" be on the interval

Absoulte Minimum on $f(x)$ is $f(d)$ if $f(a) \leq f(x)$ for all x on the interval Absoulte Maximum on $f(x)$ is $f(a)$ if $f(a) \geq f(x)$ for all x on the interval

$[a, b] \quad f(a)$ Minimum
No Maximum Not continuous at $x=c$
 $[a, b] \operatorname{Max} f(b)$
$\operatorname{Min} f(c)$

$$
(a, b) \quad \begin{gathered}
N_{0} \operatorname{Max} \\
N_{0} \\
M_{\text {Min }}
\end{gathered}
$$

Not defined at

$$
x=a \text { or } x=b
$$

 $[a, b] \operatorname{Max} f(a)=f(b)$

No Min
Not continuous at $x=c$

AP Calculus

Existence of Extrema: A continuous function f on a closed interval $[a, b]$ has both a maximum and a minimum.

Local Extrema: (Relative Extrema)

Local Minimum: at $x=c$ if $f(c)$ is the minimum on an open interval (a, b)
Local Maximum: at $x=c$ if $f(c)$ is the maximum on an open interval

Critical Points:
A number " c " in the domain of f is called a critical point if either:

$$
f^{\prime}(c)=0 \text { or } f^{\prime}(c) \text { is undefined }
$$

Local extrema occur at critical points
Absolute extrema occur at endpoints or at critical points.

AP Calculus

$$
\begin{aligned}
& \text { 1. Find the absolute extrema of } f(x)=3 x^{4}-4 x^{3} \text { on }[-1,2] \\
& f^{\prime}(x)=12 x^{3}-12 x^{2} \\
& 0=12 x^{3}-12 x^{2} \\
& 0=12 x^{2}(x-1) \\
& x=0 \quad x=1 \quad \text { critical numbers }
\end{aligned}
$$

$$
\begin{array}{lc}
\text { 2. Find the absolute extrema of } f(x)=2 x-3 x^{\frac{2}{3} \text { on }[-1,3]} \\
f^{\prime}(x)=2-3\left(\frac{2}{3}\right) x^{\prime} & f^{\prime}(x)=0 \\
\text { Numerator }=0 \\
f^{\prime}(x)=2-\frac{2}{x^{1 / 3}} & 2 x^{1 / 3}-2=0 \\
f^{\prime}(x)=\frac{2 x^{1 / 3}-1=0}{x^{1 / 3}-\frac{2}{x^{1 / 3}}} & \left(x^{1 / 3}\right)^{3}=1^{3} \\
x=1
\end{array} \quad \begin{array}{rr}
f^{\prime}(x)=\frac{2 x^{1 / 3}-2}{x^{1 / 3}} & f^{\prime}(x) \text { undefined }=0 \\
\text { Denominator }=0 \\
x^{1 / 3}=0 \\
x=0
\end{array}
$$

$$
\begin{aligned}
& \text { AP Calculus } \\
& f(x)=2 x-3 x^{2 / 3} \\
& \text { Value of } f \\
& \text { critical } \begin{array}{l}
\text { numbers }
\end{array}\left\{\begin{array}{l}
\text { Value of } x \\
x=1 \\
x=0
\end{array}\right. \\
& f(1)=2-3 \\
& f(1)=-1 \\
& f(0)=0-0 \\
& f(0)=0 \\
& \text { endpoints }\left\{\begin{array}{l}
x=-1 \\
x=3
\end{array}\right. \\
& \begin{aligned}
f(-1) & =2(-1)-3(-1)^{2 / 3} \\
& =-2-3
\end{aligned} \\
& \begin{array}{l}
=-2-3 \\
=-5
\end{array} \\
& f(3)=2(3)-3(3)^{2 / 3} \\
& =-0.24
\end{aligned}
$$

Absolute Max
Absolute Min

$$
f(-1)=-5
$$

$$
f(0)=0
$$

3. Find the absolute extrema of $f(x)=2 \sin x-\cos 2 x$ on $[0,2 \pi]$

$$
\begin{aligned}
& f^{\prime}(x)=2 \cos x-(-\sin 2 x) \cdot 2 \\
& f^{\prime}(x)=2 \cos x+2 \sin 2 x \\
& 0=2 \cos x+2 \sin 2 x \\
& \sin 2 x=2 \sin x \cos x \\
& 0=2 \cos x+2(2 \sin x \cos x) \\
& 0=2 \cos x+4 \sin x \cos x \\
& 0=2 \cos x(1+2 \sin x) \\
& 2 \cos ^{L} x=0 \\
& \cos x=0 \\
& 1+2 \sin x=0 \\
& \sin x=-\frac{1}{2} \\
& \prod_{x=\pi / 2} \\
& x=3 \pi / 2 \\
& \text { ref } L=\pi / 6 \\
& \theta=\pi+\pi / 6 \\
& \theta=7 \pi / 6 \\
& \theta=2 \pi-\pi / 6 \\
& \theta=\frac{11 \pi}{6}
\end{aligned}
$$

AP Calculus

Absolute Max $f(T / 2)=3$

$$
\begin{aligned}
& \text { Value off } \\
f(\pi / 2)= & 2 \sin \pi / 2-\cos (2 \cdot \pi / 2) \\
= & 2 \sin \pi \pi / 2-\cos \pi \\
= & 2(1)-(-1)=3 \\
f(3 \pi / 2)= & 2 \sin 3 \pi / 2-\cos (2 \cdot 3 \pi / 2) \\
= & 2 \sin 3 \pi / 2-\cos (3 \pi) \\
= & 2(-1)-(-1)=-1 \pi \\
f(7 \pi / 6)= & 2 \sin 7 \pi / 6-\cos (2 \cdot 7 \pi) \\
= & 2 \sin 7 \pi / 6-\cos 7 \pi / 3)=-3 / 2 \\
= & 2(-1 / 2)-\frac{1}{2}=-1-1 / 2=-\cos (2 \cdot 11 \pi / 6) \\
f(1 \pi / 6)= & 2 \sin \frac{11 \pi}{6}-\cos 2 \cos 11 \pi / 3 \\
= & 2 \sin 11 \pi / 6-\cos \\
= & 2\left(\frac{-1}{2}\right)-\left(\frac{1}{2}\right) \\
& =-1-1 / 2=-3 / 2
\end{aligned}
$$

$$
f(0)=2 \sin (0)-\cos (2(0))
$$

$$
=2(0)-(1)
$$

$$
=-1
$$

$$
f(2 \pi)=-1
$$

Absolute Min

$$
\begin{aligned}
& \text { Absolute Min } \\
& f(7 \pi / 6)=f(11 \pi / 6)=-\frac{3}{2}
\end{aligned}
$$

Bole's Theorem:
$f(x)$ is continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b). If $f(a)=f(b)$ then there is a number " c " such that $f^{\prime}(c)=0$
4. Find all values of c on $[-2,2]$ such that $f^{\prime}(c)=0 f(x)=x^{4}-2 x^{2}$ $f(x)$ is continuous and differentiable

$$
\begin{aligned}
a & =-2 \\
f(-2) & =(-2)^{4}-2(-2)^{2} \\
& =16-8 \\
& =8
\end{aligned}
$$

$$
\begin{aligned}
& b=2 \\
& f(2)=(2)^{4}-2(2)^{2} \\
&=16-8 \\
&=8
\end{aligned}
$$

$$
f(-2)=f(2)
$$

\therefore There exists a point c where $f^{\prime}(c)=0$

$$
\begin{aligned}
f^{\prime}(x) & =4 x^{3}-4 x \\
0 & =4 x^{3}-4 x \\
0 & =4 x\left(x^{2}-1\right) \\
x & =0 \quad x=1 \quad x=-1
\end{aligned}
$$

