4.2 Extreme Values

Extreme Values on an Interval: Let $f(x)$ be a function on an interval, let "a" be on the interval

Absoulte Minimum on $f(x)$ is $f(a)$ if $f(a) \leq f(x)$ for all x on the interval Absoulte Maximum on $f(x)$ is $f(a)$ if $f(a) \geq f(x)$ for all x on the interval

Existence of Extrema: A continuous function f on a closed interval $[a, b]$ has both a maximum and a minimum.

Local Extrema: (Relative Extrema)

Local Minimum: at $x=c$ if $f(c)$ is the minimum on an open interval

Local Maximum: at $x=c$ if $f(c)$ is the maximum on an open interval

Critical Points:
A number " c " in the domain of f is called a critical point if either:

Local extrema occur at critical points
Absolute extrema occur at endpoints or at critical points.

1. Find the absolute extrema of $f(x)=3 x^{4}-4 x^{3}$ on $[-1,2]$

2. Find the absolute extrema of $f(x)=2 x-3 x^{\frac{2}{3}}$ on $[-1,3]$

3. Find the absolute extrema of $f(x)=2 \sin x-\cos 2 x$ on $[0,2 \pi]$

AP Calculus

Rolle's Theorem:
$f(x)$ is continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b). If $f(a)=f(b)$ then there is a number " c " such that $f^{\prime}(c)=0$
4. Find all values of c on $[-2,2]$ such that $f^{\prime}(c)=0 f(x)=x^{4}-2 x^{2}$

