4.3 Trigonometric Ratios

Monday, October 18, 2021 10:56 AM

Chapter 4 Page 1

4.3 Trigonometric Ratios

If (x, y) is a point on the terminal arm of a circle then the following ratios can be determined:

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \\
& \cos \theta=\frac{x}{r} \\
& \tan \theta=\frac{y}{x}
\end{aligned}
$$

Reciprocal Trig Ratios

Cosecant is the reciprocal of $\sin e$

Secant is the reciprocal of COSine

$$
\sec \theta=\frac{1}{\cos \theta} \quad \text { or } \quad \sec \theta=\frac{r}{x}
$$

Cotangent is the reciprocal of \square

$$
\cot \theta=\frac{1}{\tan \theta} \text { or } \cot \theta=\frac{x}{y}
$$

Pre-Calculus 12

$$
r=1
$$

Ex.\#1: The point $\left(-\frac{3}{5}, \frac{4}{5}\right)$ is on the unit circle and the terminal arm of angle θ.
Find the value of all six trig ratios.

$$
\csc \theta=\frac{5}{4}
$$

$$
\begin{aligned}
& \sin \theta=\frac{y}{r}=\frac{(4 / 5)}{1}=\frac{4}{5}=\frac{(-3 / 5)}{1}=\frac{4}{5}=\frac{4}{(-3 / 5)} \\
& \cos \theta=\frac{-3(5)}{3} \\
& \tan \theta=\frac{-4}{3} \\
& \sec \theta=\frac{4}{3} \\
& \sec \theta
\end{aligned}
$$

Ex.\#2: The point $(-3,-8)$ is on the terminal arm of angle θ. Find the value of all six trig ratios.

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& (-3)^{2}+(-8)^{2}=r^{2} \\
& 9+64=r^{2} \\
& 73=r^{2} \\
& r=\sqrt{73} \\
& \sin \theta=\frac{y}{c}=\frac{-8}{\sqrt{73}} \\
& \cos \theta=\frac{x}{r}=\frac{-3}{\sqrt{73}} \\
& \tan \theta=\frac{y}{x}=\frac{-8}{-3}=\frac{8}{3} \\
& \csc \theta=\frac{-\sqrt{73}}{8} \quad \sec \theta=\frac{-\sqrt{73}}{3} \quad \cot \theta=\frac{3}{8}
\end{aligned}
$$

Pre-Calculus 12

Ex. \#3: Find the exact trig ratio:
(a) $\sin \frac{5 \pi}{6}$

$$
\begin{aligned}
\text { ref } & =\pi-\frac{5 \pi}{6} \\
& =\frac{6 \pi}{6}-\frac{51 \pi}{} \\
& =\pi / 6
\end{aligned}
$$

Draw the angle
Find reference angle
Apply special Δ

$$
\sin \frac{5 \pi}{6}=\frac{1}{2} \quad \sin \theta=\frac{y}{r}
$$

$$
\begin{aligned}
& \text { ref }=\frac{5 \pi}{4}-\frac{4 \pi}{4} \\
& \text { ref }=\frac{\pi}{4} \\
& \cos \theta=\frac{x}{r} \\
& \cos \frac{5 \pi}{4}=\frac{-1}{\sqrt{2}}
\end{aligned}
$$

(c) $\csc 300^{\circ}$

$$
\overbrace{\frac{1}{2} 0^{\circ}-\sqrt{3}}^{1}
$$

$$
\begin{aligned}
\text { ref } \angle & =360^{\circ}-300^{\circ} \\
& =60^{\circ} \\
& \sin \theta=\frac{y}{r} \\
& \sin 300^{\circ}=\frac{-\sqrt{3}}{2} \\
& \csc 300^{\circ}=\frac{-2}{\sqrt{3}}
\end{aligned}
$$

Pre-Calculus 12
(d) $\cot \left(-120^{\circ}\right)$

$\tan \theta=\frac{y}{x}$
$\tan \left(-120^{\circ}\right)=\frac{-\sqrt{3}}{-1}$
$\cot \left(-120^{\circ}\right)=\frac{1}{\sqrt{3}}$

Ex. \#4: Use a calculator to find the trig ratios (to the nearest thousandth)
(a) $\sin 50^{\circ}$
(b) $\sec 100^{\circ}$
(c) $\tan \frac{5 \pi}{7}$

