4.3 Mean Value Theorem and Monotonicity

Mean Value Theorem: $f(x)$ is continuous on $[\mathrm{a}, \mathrm{b}]$ and differentiable on (a, b). Then there exists at least one value c on (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Slope of Secant Line $=$

Slope of Tangent Line $=$

The Mean Value Theorem implies that:

1. Verify the Mean Value Theorem (MVT) for $f(x)=5-\frac{4}{x}$ on the interval $(1,4)$.

Increasing and Decreasing Behavior of Functions

Increasing on (a, b)

Decreasing on (a, b)

Monotonic
$f(x)$ is montonic on (a, b) if the function is always increasing or always decreasing

2. Find the intervals where $\mathrm{f}(\mathrm{x})$ is increasing and decreasing. $f(x)=x^{4}-4 x^{3}-8 x^{2}-1$

First Derivative Test For Critical Points:

$f(x)$ is differentiable and ' c ' is a critical point of the function.
Critical points occur when $f^{\prime}(x)=0$ or $f^{\prime}(x)$ is undefined
If $f^{\prime}(x)$ changes from positive to negative at c , then $f(c)$ is a local maximum If $f^{\prime}(x)$ changes from negative to positive at c , then $f(c)$ is a local minimum

3. Find the extrema of $f(x)=\frac{1}{2} x-\sin x$ on $(0,2 \pi)$

AP Calculus
4. Find the relative extrema of $f(x)=\frac{x^{4}+1}{x^{2}}$

