4.4 Shape of a Graph Part 1

Monday, June 14, 2021 11:04 AM

AP Calculus
4.4 The Shape Of A Graph Part 1

Concavity: The graph of f is concave upwards if f^{\prime} is increasing and concave downwards if f^{\prime} ' s decreasing.

Concave Up

$$
\begin{aligned}
& \text { Makes a cup } \\
& \text { left } \rightarrow \text { right } \\
& f^{\prime}(x) \text { is increasing }
\end{aligned}
$$

Tangent lines below the graph of $f(x)$

Concave Down

Makes a frown

$$
\begin{aligned}
& \text { left } \rightarrow \text { right } \\
& f^{\prime}(x) \text { is decreasing }
\end{aligned}
$$

Tangent lines above the graph of $f(x)$

AP Calculus
\#1 $f(x)=\frac{1}{3} x^{3}-x$ Graph the function on $[-2,2]$

a) Concavity of the function
concave up

$$
x>0 \quad x<0
$$

b) Relationship of the zeroes of $f^{\prime}(x)$ and the function

$$
\begin{aligned}
f^{\prime}(x) & =x^{2}-1 \\
0 & =x^{2}-1
\end{aligned}
$$

When $x=1 \quad x=-1$ $f(x)$ Has a max
c) Relationship of the zeroes of $f^{\prime \prime}(x)$ and the function

$$
\begin{gathered}
f^{\prime \prime}(x)=2 x \\
0=2 x
\end{gathered}
$$

$$
0=x
$$

d) Relationship of the zeroes of $f^{\prime \prime}(x)$ and the first derivative

$$
x=0
$$

$f^{\prime}(x)$ has a minimum
Test for Concavity:

$$
\begin{aligned}
& f^{\prime \prime}(x)>0 \text { (positive) } f(x) \text { is concave up } \\
& f^{\prime \prime}(x)<0 \text { (negative) } f(x) \text { is concave down }
\end{aligned}
$$

\#2 $f(x)=\frac{x^{2}+1}{x^{2}-4}$ Determine the concavity of the function.

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}-4\right)(2 x)-\left(x^{2}+1\right)(2 x)}{\left(x^{2}-4\right)^{2}} \\
& f^{\prime}(x)=\frac{2 x^{3}-8 x-2 x^{3}-2 x}{\left(x^{2}-4\right)^{2}} \\
& f^{\prime}(x)=\frac{-10 x}{\left(x^{2}-4\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{\left(x^{2}-4\right)^{2}(-10)-(-10 x)(2)\left(x^{2}-4\right)^{\prime}\left(2^{2} x\right)}{\left(\left(x^{2}-4\right)^{2}\right)^{2}} \\
& f^{\prime \prime}(x)=\frac{-10\left(x^{2}-4\right)\left[x^{2}-4-4 x^{2}\right]}{\left(x^{2}-4\right)^{4} 3} \\
& f^{\prime \prime}(x)=\frac{-10\left[-3 x^{2}-4\right]}{\left(x^{2}-4\right)^{3}}
\end{aligned}
$$

$$
f^{\prime \prime}(x)=0
$$

Numerator $=0$

$$
\begin{array}{r}
-3 x^{2}-4=0 \\
x^{2}=-\frac{4}{3}
\end{array}
$$

Never

$$
\left.\begin{array}{c}
(-\infty,-2) \\
x=-3
\end{array}\right)(-2,2)(2, \infty)
$$

$$
x=-3
$$

$$
\operatorname{sign}_{f^{\prime \prime}(x)}^{\oplus}
$$

concave UP $(-\infty,-2)$ and $(2, \infty)$ concave down $(-2,2)$

AP Calculus

Points of Inflection:
If the tangent lines to the graph exist at a point where the graph changes concavity, then the point is called an inflection point. If $(c, f(c))$ is an inflection point of f, then either

$$
f^{\prime \prime}(c)=0 \text { or } f^{\prime \prime}(c) \text { is undefined }
$$

\#3 Find the points of inflection if $f(x)=x^{4}-4 x^{3}$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-12 x^{2} \\
& f^{\prime \prime}(x)=12 x^{2}-24 x * \\
& 0=12 x^{2}-24 x \\
& 0=12 x(x-2) * \\
& x=0 \quad x=2 \\
& (-\infty, 0)(0,2)(2, \infty) \\
& \begin{array}{ccc}
\begin{array}{c}
x=-1 \\
\text { concave } \\
\text { up }
\end{array} & \begin{array}{c}
x=1 \\
\text { concave } \\
\text { down }
\end{array} & \begin{array}{c}
x=3 \\
\text { concave } \\
\text { Up }
\end{array} \\
& &
\end{array}
\end{aligned}
$$

Need y-values

$$
\begin{array}{rlrl}
\text { Ied } y \text {-values } & & \\
x=0 & f(0) & =0^{4}-4(0)^{4} & x=2 \\
f(2) & =2^{3}-4(2)^{3} \\
f(0) & =0 & f(2) & =16-32 \\
f(2) & =-16
\end{array}
$$

Inflection points at $(0,0)$ and $(2,-16)$ due to a change in concavity.

