4.5 Part 1 Interpreting Graphs of functions
4.5 Interpreting Graphs of Functions Part 1
A. Intercepts : x-intercept and y-intercept
x-intercept - the point where the graph crosses the \qquad -axis
To find the x-intercept make $y=0$ and solve for x.
y-intercept - the point where the graph crosses the \qquad To find the y-intercept make $x=0$ and solve for y

Example 1 : Determine the coordinates of the intercepts.

$$
\begin{aligned}
& \text { x-intercept } x=3 \text { or }(3,0) \\
& \text { y-intercept } y=-6 \text { or }(0,-6)
\end{aligned}
$$

Example 2 : Determine the coordinates of the intercepts. Use the intercepts to graph the function.

$$
2 x+4 y=8
$$

x-intercept

$$
\begin{array}{rr}
\text { xintercept } & 2 x+4(0)=8 \\
\text { make } y=0 & 2 x=8
\end{array}
$$

$$
\frac{2 x}{2}=\frac{8}{2}
$$

$$
(4,0) \quad x^{2}=4^{2}
$$

y-intercept $\operatorname{make} x=0 \quad 2(0)+4 y=8$

$$
\frac{4 y}{4}=\frac{8}{4}
$$

Mrs. Shaw

$$
y=2
$$

F\&PC10

$$
(0,2)
$$

Example 3 : This graph shows the fuel consumption of a scooter with a full tank of gas at the beginning of a journey.

Volume of Gas in a Scooter

a) Write the coordinates of the points where the graph intersects the axes. Determine the vertical and horizontal intercepts. Describe what these intersection points represent.
(0,8) y-intercept (V-intercept)
Volume of gas befor the journey
$(200,0) \times$-intercept (D-intercept))
b) What are the domain and range of this function?
$0 \leqslant D \leqslant 200$
B. Rate of Change becomes empty.

In a linear relation, the rate of change is the comparison between the change in the dependent variable and the change in the independent variable. It is tradition to represent rate of change with the letter m.

$$
m=\text { rate of change }=\frac{\text { change in dependent variable }}{\text { change in independent variable }}=\frac{\text { vertical displacement }}{\text { horizontal displacement }}=\frac{\text { change in } y^{\prime} S}{\text { change in } x^{\prime} s}
$$

Example 4 : Determines the rate of change of the following linear relation:
a)
a)
xs Change in
XS $\left\{\begin{array}{l}\text { change in independent variable }=3\end{array}\right.$
$y^{\prime} s\left\{\begin{array}{l}\text { change in the } \\ \text { dependent variable }=5\end{array}\right.$

$$
\begin{aligned}
& \text { indent variable } \\
& \text { rate of change }=\frac{5}{3} \text { y's } \\
& \text { x's }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rate of change }=\frac{-20}{2} \mathrm{~m} \\
&=-10 \mathrm{~m} / \\
& \text { F\&PC10 }
\end{aligned}
$$

Example 5 : Constructs a table of values and determines the rate of change.
For a service call, a plumber charges $\$ 75$, plus $\$ 50$ per hour for each hour worked. The total cost for service is related to time.

$$
\begin{aligned}
\text { rate of change } & =\frac{50}{1} \\
m & =50 / \mathrm{hr}
\end{aligned}
$$

Example 6 : A water tank on a farm holds 6000 L . The graph represents the tank being filled at a constant rate. Determine the rate of change and what the rate represents.

Filling a Water Tank

$$
\begin{aligned}
& m=\frac{\text { vertical change }}{\text { horizontal change }} \\
& m=\frac{6000}{120} \\
& m=50 \mathrm{~L} / \mathrm{min}
\end{aligned}
$$

