1. A manufacturer wants to design an open box having a square base and a surface area of 108 square inches. What dimensions will produce the maximum volume?

$$
\begin{array}{ll}
S=108 & V=\overline{x^{2} y} \\
08=x^{2}+4 x y & V=x^{2}\left[\frac{108-x^{2}}{4 x}\right] \\
08-x^{2}=4 x y & V=\frac{108 x^{2}-x^{4}}{4 x} \\
\frac{08-x^{2}}{4 x}=y & V=27 x-\frac{1}{4} x^{3}
\end{array}
$$

$$
0 \leq x \leq \sqrt{108}
$$

$$
\begin{aligned}
V^{\prime} & =27-\frac{1}{4}\left(3 x^{2}\right) \\
V^{\prime} & =27-\frac{3}{4} x^{2} \\
0 & =27-\frac{3}{4} x^{2} \\
\frac{3}{4} x^{2} & =27 \\
x^{2} & =27\left(\frac{4}{3}\right) \\
x^{2} & =36 \\
x & =6
\end{aligned}
$$

Dimensions
6 by 6 by 3 inches.

- Identify the quantity to be maximized/ minimized
- Write an equation in one variable (use a secondary equation)
- Determine domain
- Use calculus to find max I min

2. A rectangular page is to contain 24 square inches of print The margins at the top and bottom of the page are each 1.5 inches. The margins on each side are 1 inch What should the dimensions of the page be so that the least amount of paper is used?

$$
\begin{gathered}
A^{\prime}=0+72(-1) y^{-2}+2 \\
A^{\prime}=\frac{-72}{y^{2}}+2 \\
A^{\prime}=\frac{-72+2 y^{2}}{y^{2}} \\
-72+2 y^{2}=0 \\
2 y^{2}=72 \\
y^{2}=36 \\
y=6
\end{gathered}
$$

$$
\begin{aligned}
A_{\text {page }} & =(x+2)(y+3) \\
A & =\left(\frac{24}{y}+2\right)(y+3) \\
A & =24+\frac{72}{y}+2 y+6 \\
A & =30+\frac{72}{y}+2 y
\end{aligned}
$$

$y=6$ minimum
find x

$$
x=\frac{24}{6}
$$

$$
x=4
$$

dimensions of page

$$
\begin{gathered}
(x+2) \\
x=4
\end{gathered} \begin{gathered}
(y+3) \\
y=6
\end{gathered}
$$

6 by 9 inches

$$
\begin{aligned}
& \text { ea of the triangle. } \\
& A=\frac{x y}{2}
\end{aligned}
$$

$$
A=\frac{x}{2}\left[\frac{6}{x-2}+3\right]
$$

$$
x=4
$$

$$
\begin{align*}
A^{\prime} & =\frac{2(x-2)(6 x)-3 x^{2}(2)}{4(x-2)^{2}} \\
& =\frac{6 x^{2}-12 x-3 x^{2}}{2(x-2)^{2}} \\
& =\frac{3 x^{2}-12 x}{2(x-2)^{2}}
\end{align*}
$$

$$
\left\{\begin{array}{l}
A=\frac{x}{2}\left[\frac{6+3 x-6}{x-2}\right] \\
A-3 x^{2}
\end{array}\right.
$$

$$
y-3=\frac{6}{x-2}
$$

$$
y=\frac{6}{4-2}+3
$$

$$
A=\frac{3 x^{2}}{2(x-2)}
$$

$$
y=\frac{6}{x-2}+3
$$

$$
\begin{aligned}
& 3 x^{2}-12 x=0 \\
& 3 x(x-4)=0 \quad \text { sign } \\
& x \geq 0 \quad x=4
\end{aligned} \quad A^{\prime}
$$

$$
(2,4)(4, \infty)
$$

$$
y=6
$$

$$
x=3 \quad x=5
$$

$$
\text { Area }=\frac{(4)(6)}{2}
$$

$$
x=4
$$

4. Find the points on the parabola, $y=6-x^{2}$ that are closest to the point $(0,3)$
5. Four feet of wire is to be used to form a square and a circle. How much of the wire should be used for the square and how much should be used for the circle to enclose the minimum total area?
