3. A triangle is formed in the first quadrant using the axes and a line through the point $(2,3)$. Find the minimum area of the triangle.
4. Find the points on the parabola, $y=6-x^{2}$ that are closest to the point $(0,3)$

$$
\begin{aligned}
& d=\sqrt{(x-0)^{2}+(y-3)^{2}} \quad y=6-x^{2} \\
& d=\sqrt{x^{2}+(y-3)^{2}} \\
& d=\sqrt{x^{2}+\left(6-x^{2}-3\right)^{2}} \\
& d=\sqrt{x^{2}+\left(3-x^{2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& d=\sqrt{x^{2}+9-6 x^{2}+x^{4}} \\
& d=\sqrt{x^{4}-5 x^{2}+9} \\
& d^{\prime}=\frac{1}{2}\left(x^{4}-5 x^{2}+9\right)^{-\frac{1}{2}} \cdot\left(4 x^{3}-10 x\right) \\
& d^{\prime}=\frac{4 x^{3}-10 x}{2\left(x^{4}-5 x^{2}+9\right)^{1 / 2}} \\
& x=0 \quad x= \pm \sqrt{5} / 2 \\
& \left.\begin{array}{ccc}
(-\infty,-\sqrt{5} / 2) & (-\sqrt{5} / 2,0) & (0, \sqrt{5} / 2
\end{array}\right)(\sqrt{5} / 2,8) \\
& \oplus \Theta \oplus \\
& x= \pm \sqrt{5} / 2 \operatorname{Min} \\
& y=6-(\sqrt{5} /)^{2} \\
& =6-\frac{5}{2} \quad y=\frac{7}{2} \quad\left(\sqrt{\frac{5}{2}}, \frac{7}{2}\right)\left(-\sqrt{\frac{5}{2}}, \frac{7}{2}\right)
\end{aligned}
$$

when d^{\prime} is
undefined
when $d^{\prime}=0$

$$
\begin{gathered}
4 x^{3}-10 x=0 \\
2 x\left(2 x^{2}-5\right)=0
\end{gathered}
$$

5. Four feet of wire is to be used to form a square and a circle. How much of the wire should be used for the square and how much should be used for the circle to enclose the minimum total area?

$$
\begin{aligned}
& A=x^{2}+\pi\left[\frac{2-2 x}{\pi}\right]^{2} \\
& A=x^{2}+\frac{\pi\left(4-8 x+4 x^{2}\right)}{\pi^{2}} \\
& A=x^{2}+\frac{4-8 x+4 x^{2}}{\pi} \\
& A^{\prime}=2 x+0-\frac{8}{\pi}+\frac{8 x}{\pi} \\
& 0=2 x-\frac{8}{\pi}+\frac{8 x}{\pi} \\
& \frac{8}{\pi}=2 x+\frac{8 x}{\pi} \\
& \frac{8}{\pi}=x\left(2+\frac{8}{\pi}\right) \\
& \frac{8}{\pi}=x \quad x=\frac{4}{\pi+4}
\end{aligned}
$$

Sign
A^{\prime}

