5.1 Slope of Line

Thursday, April 27, 2023 8:55 AM

Unit 5 Lines Page 1
5.1 The Slope of Line

The slope of a line in the Cartesian plane is the measure of the \qquad Change in dependent variable divided by the change in independent (x)
(y)

$$
\begin{aligned}
\text { Rate of change }= & \frac{\text { Change dependent }}{\text { Change independent }} \\
& =\frac{\text { change in } y^{\prime} \text { 's }}{\text { chang in } x^{\prime} \text { s }} \\
\text { Slope } & =\frac{\text { rise }}{\text { run }}
\end{aligned}
$$

Example 1 : Determines the slope of each line segment.
a) 2

When a line segment goes up to the right 1 the slope is positive
c)

The slope of a horizontal line zero
b)

When a line segment goes down to the right the slope is negative
d)

The slope of a vertical line is No slope

Mrs. Shaw

Slope of a line
A line goes through the points $A\left(x_{1}, y_{1}\right)$ et $B\left(x_{2}, y_{2}\right)$
Slope of the line $A B=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Example 2 : Determine the slope of the line passing through the points $C(-5,-3) \mathcal{N} D(2,1)$.

$$
\begin{aligned}
\text { slope }=m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m & =\frac{1-(-3)}{2-(-5)} \\
m & =\frac{4}{7}
\end{aligned}
$$

Example 3: Using the formula, determines the slope of the line that passes through the points and

$$
\begin{gathered}
\text { a) } \begin{array}{c}
A(5,4) A_{B}^{(2,-5)} \\
x_{1} y_{1} x_{2} y_{2} \\
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
m=\frac{-5-4}{2-5} \\
m=\frac{-9}{m} \div-3 \\
m=3
\end{array} \\
m=3
\end{gathered}
$$

b) $C(-2,8)$ C ll $D(6,-4)$

$$
x_{1} y_{1} \quad x_{2} y_{2}
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
m=\frac{-4-8}{6-(-2)}
$$

$$
m=\frac{-12 \div 4}{8} \div 4
$$

$$
m=\frac{-3}{2}
$$

Example 4 : Interpreting the slope of a line
Yvonne took a bicycle ride on the Trans Canada Trail in Manitoba. At various times, she noted the distance she had travelled since she left. She graphed these data in a Cartesian plane.

What is the slope of the line that passes through these points?
Graph of a Bicycle Ride

$$
\begin{aligned}
& \text { rise }=24 \\
& \text { run }=1
\end{aligned} \quad \text { slope }=\frac{24}{1}=24
$$

What does this slope represent?
The values of y are distance in Km
The values of \boldsymbol{x} are \qquad time in \qquad
So the units of the slope are:

a) Determine:
i) The distance Yvonne travelled in 1.75 hours.

$$
\begin{aligned}
& 1.75\left(\frac{24}{1}\right)=\left(\frac{d}{1.75}\right)^{1.75} \\
& \text { hrs } \\
& 1.75\left(\frac{24}{1}\right)=d \\
& \frac{1.75(24)}{}=d \\
& 42 \mathrm{~K}=d \\
& \frac{t \cdot 24}{24}=\frac{55}{24} \\
& t=\frac{55}{24}=2.29 \mathrm{hr}
\end{aligned}
$$

$$
\frac{24}{1} \mathrm{krs}=\frac{d}{1.75 \mathrm{hrs} \quad\left(\frac{1}{1}\right)(1.75)} 1.75\left(\frac{24}{1}\right)=d
$$

ii) How long did Yvonne take to travel 55 km ?

$$
\begin{array}{ll}
\frac{24 \mathrm{Km}}{1 \mathrm{hr}}=\frac{55 \mathrm{~km}}{t} & \frac{t \cdot 24}{24}=\frac{55}{24} \\
t \cdot 24=\frac{55}{t} \cdot t & t=\frac{55}{24}=2.29 \mathrm{hr}
\end{array}
$$

Practice: p. 339 \#5, 6, 11, 13, 17, 18, 19, 23
Mrs. Shaw

