If f is defined on the closed interval $[a, b]$ and the limit

$$
\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

as $h \rightarrow \infty$
width of rectangles get smaller $\therefore \Delta x \rightarrow 0$
exists then f is integrable on $[a, b]$ and the limit is denoted by

$$
\lim _{\Delta x \rightarrow 0} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x=\int_{a}^{b} f(x) d x
$$

This is a definite integral Definite integral is a number
Indefinite integral is a family of functions

1. Evaluate using summation formulas.

$$
\int_{-1}^{2} 2 x d x
$$

$$
\Delta x=\frac{b-a}{n}=\frac{2-(-1)}{n}=\frac{3}{n}
$$

$$
C_{i}=\text { right endpoint } \quad f(x)=2 x
$$

$$
c_{i}=a+\Delta x i
$$

$$
C_{i}=-1+\frac{3}{n} i
$$

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(-1+\frac{3 i}{n}\right) \cdot \frac{3}{n}
$$

$$
=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n} 2\left(-1+\frac{3 i}{n}\right)
$$

$$
=\lim _{n \rightarrow \infty} \frac{3}{n} \sum_{i=1}^{n}\left(-2+\frac{6 i}{n}\right)
$$

$\int_{a}^{b} f(x) d x=$ signed area of a region between the graph and the x-axis over $[a, b]$
2. Evaluate using geometry

$$
\begin{aligned}
\quad \int_{-1}^{2} 2 x d x & \text { Area }
\end{aligned}=A_{1}+A_{2} .
$$

3. Evaluate using geometry
$\int_{0}^{2}|2 x-1| d x$
(1) $y=2 x-1$
(2) $y=|2 x-1|$

$$
\begin{aligned}
& =A_{1}+A_{2} \\
& =\frac{\left(\frac{1}{2}\right)(1)}{2}+\frac{\left(\frac{3}{2}\right)(3)}{2} \\
& =\frac{1}{2} \cdot \frac{1}{2}+\frac{9}{2} \cdot \frac{1}{2} \\
& =\frac{1}{4}+\frac{9}{4} \\
& =10 / 4 \\
& =5 / 2
\end{aligned}
$$

x-inter copt of $y=2 x-1$

Properties of definite integrals

$$
\begin{aligned}
& \text { Properties of definite integrals } \\
& \int_{a}^{b} f(x) d x=\int_{a}^{b} f(x) d x+\int_{c}^{b} f(x) d x \quad a<c<b \\
& \int_{a}^{b} k f(x) d x=K \int_{0}^{b} f(x) d x
\end{aligned}
$$

$$
\int_{a}^{b}[f(x) \pm g(x)] d x=\int_{a}^{b} f(x) d x \pm \int_{0}^{b} g(x) d x
$$

$\int_{a}^{b} f(x) d x \geqslant 0$ if $f(x)$ is non-negative on $[a, b]$
$\int_{a}^{b} f(x) d x \geqslant \int_{a}^{b} g(x) d x$ if $f(x) \geqslant g(x)$ on $[a, b]$

$$
\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x
$$

4. Evaluate

$$
\begin{aligned}
& \int_{1}^{3}\left(-x^{2}+4 x-3\right) d x \\
& \text { given that } \int_{1}^{3} x^{2} d x=\frac{26}{3} \int_{1}^{3} x d x=-4 \int_{1}^{3} d x=-2 \\
&= \int_{1}^{3}-x^{2} d x+\int_{1}^{3} 4 x d x+\int_{1}^{1}-3 d x \\
&=-\int_{1}^{3} x^{2} d x+4 \int_{1}^{3} x d x-3 \int_{1}^{3} d x \\
&=-\frac{26}{3}+4(4)-3(2) \\
&=-\frac{26}{3}+16-6 \\
&=-\frac{26}{3}+\frac{48}{3}-\frac{18}{3}=\frac{4}{3}
\end{aligned}
$$

5. Evaluate the following given that

$$
\text { a) } \begin{aligned}
& \int_{2}^{9} f(x) d x \\
= & \int_{0}^{9} f(x) d x-\int_{0}^{2} f(x) d x \\
= & 6.75-5 \\
= & 1.75
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \int_{0}^{2}(f(x)+x) d x \\
& =\int_{0}^{2} f(x) d x+\int_{0}^{2} x d x \\
& =5+2
\end{aligned}
$$

