Pre-Calculus 12
5.3 The Tangent Function

$$
\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \sqrt{2 / \sqrt{2}}=1
$$

$$
\tan \theta=\frac{y}{x}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\text { Tangent Function } \\
\text { Graphing the tan function }
\end{array} \quad f(\theta)=\tan \theta \\
& \theta \mid f(\theta) \\
& \%=0 \\
& \pi / 4 \quad 1 / \sqrt{3} / \frac{1}{\sqrt{2}}=1 \\
& \frac{\pi}{2} \frac{1}{0}=\text { undefined } \\
& \begin{array}{l|l}
-\pi / 4 & -1 / \sqrt{2} / 2=-1 \\
-\pi / 2 & \frac{1}{\sqrt{2}}=\text { Asymptote }
\end{array}
\end{aligned}
$$

Pre-Calculus 12

$$
\begin{aligned}
& \tan \theta=\frac{Y}{X} \\
& \therefore \frac{\sin \theta}{\cos \theta}=\frac{\operatorname{Yin} \theta}{X / r}
\end{aligned} \quad \Rightarrow \frac{Y}{r} \cos \theta=\frac{X}{\cos \theta}=\frac{Y}{r} \cdot \frac{r}{X} \Rightarrow \frac{\sin \theta}{\cos \theta}=\frac{Y}{X}=\tan \theta
$$

- What is the period of $y=\tan x$?
period $=\frac{11}{11}$

$$
y=\tan b x
$$

- What is the value of any asymptotes of $y=\tan x$?
- What is the general equation for the asymptotes?

$$
x=\frac{\pi}{2}+\pi n
$$

$$
x=(o d d \| s) \pi / 2
$$

- What is the amplitude of $\tan x$?
$\left.\begin{array}{lll}\text { No } & \text { Max } \\ \text { No } & \text { Min }\end{array}\right\}$ No ample tide
- What is the domain? x-value

$$
x \neq \text { asymptotes }
$$

$$
\{x \left\lvert\, \underbrace{x \neq \frac{\pi}{2}+\pi n \quad n \in I}_{\text {asymptote }} x \in \mathbb{R}\right.\}
$$

$$
\{y \mid y \in \mathbb{R}\}
$$

Pre-Calculus 12
period $=\frac{\pi}{3}$ sym $=2 \pi / 2=\frac{\pi}{6}$
Example \#1 \quad Graph $y=\tan 3 \theta \quad b=3$

Example \#2 Given $y=3 \tan \frac{1}{2} \theta$ find the following:
a) Period

$$
\text { a) Period } \text { period }=\frac{\pi}{b}
$$

$$
b=\frac{1}{2}
$$

$$
\begin{aligned}
\text { period } & =\frac{\pi}{1 / 2} \\
& =\pi \cdot \frac{2}{1} \\
& =2 \pi^{1}
\end{aligned}
$$

b) Amplitude

None

$$
a=3
$$

c) First asymptote to the right of the origin

$$
\begin{aligned}
& \text { c) First asymptote to the right of the origin }(0,0) \\
& \begin{aligned}
\text { Dst Asymptote } & =\frac{1}{2} \text { period } \\
& =\frac{1}{2} \cdot 2 \pi
\end{aligned} \quad \begin{aligned}
\end{aligned} \quad \text { |st Asym }=\pi
\end{aligned}
$$

d) Second asymptote to the right of the origin

$$
\begin{aligned}
\text { dad sym } \begin{aligned}
\text { second asymptote to the right of the origin } & =1 s t \text { asym }+ \text { period } \\
& =\pi+2 \pi \\
& =3 \pi
\end{aligned}
\end{aligned}
$$

Pre-Calculus 12

Practice

1. Graph each function and state the following:

- The period
- General equation of asymptotes
- Domain
- Range
a) $y=\tan 2 \theta-\pi<\theta<\pi$
b) $y=\tan 4 \theta$ at least 3 periods
c) $y=3 \tan \theta-\pi<\theta<\pi$
d) $y=\tan \left(\theta-\frac{\pi}{2}\right)-\pi<\theta<\pi$

