Water flows into an empty bucket at a rate of $r(t)$ liters per second. How much water is in the

$$
\begin{aligned}
& \text { bucket after } 4 \text { seconds? } \\
& \text { If } r(t)=1.5 \text { liters } / \text { second then } \quad(r a t e)(\text { time })=\text { Quantity }
\end{aligned}
$$

$$
\begin{aligned}
\text { Quantity } & =(1.5)(4) \\
& =6 \text { liters. }
\end{aligned}
$$

However the rate may not be constant. The graph represents $r(t)$;


Net Change as the Integral of a Rate
The net change in $s(t)$ over an interval $\left[t_{1}, t_{2}\right]$ is given by

$$
\int_{t_{1}}^{t_{2}} s^{\prime}(t) d t=s\left(t_{2}\right)-s\left(t_{1}\right)
$$

1. Water leaks out of a tank at a rate of $2+3 t$ liters/hour, where $t$ is the number of hours after 2 pm . How much water has been lost between 4 pm and 6 pm .

$$
\begin{aligned}
& r(t)=-(2+3 t) \\
& s^{\prime}(t)=-2-3 t \\
& {[2,4]}
\end{aligned}
$$

The Integral of Velocity

$$
\begin{aligned}
\text { Quantity } & =\int_{2}^{4}(-2-3 t) d t \\
& =-\frac{2 t-\left.\frac{3 t^{2}}{2}\right|_{2} ^{2}}{4} \\
& =-2(4)-\frac{3(4)^{2}}{2}-\left(-2(2)-\frac{3(2)^{2}}{2}\right)
\end{aligned}
$$

For an object in linear motion with velocity $v(t)=-8-24+4+6=-22$

$$
\begin{aligned}
\text { Displacement during }\left[t_{1}, t_{2}\right] & =\int_{t_{1}}^{t_{2}} v(t) d t \\
\text { Distance travelled during }\left[t_{1}, t_{2}\right] & =\int_{t_{1}}^{t_{2}}|v(t)| d t
\end{aligned}
$$

2. Find the displacement over the time interval $[1,6]$ of a helicopter whose vertical velocity at time $t$ is $v(t)=.02 t^{2}+t \mathrm{ft} / \mathrm{s}$

$$
\begin{aligned}
& \int_{1}^{6}\left(02 t^{2}+t\right) d t \\
& \frac{.02 t^{3}}{3}+\left.\frac{t^{2}}{2}\right|_{1} ^{6} \\
= & \frac{02}{3}(6)^{3}+\frac{36}{2}-\left(\frac{.02}{3}+\frac{1}{2}\right) \\
= & 1.44+18-\frac{.02}{3}-\frac{1}{2}=18.93
\end{aligned}
$$

3. A particle is moving along a straight line with velocity $v(t)=\cos t \mathrm{~m} / \mathrm{s}$.
a) Find the total displacement over the time interval $[0,2 \pi]$

$$
\begin{aligned}
& =\int_{0}^{2 \pi} \cos t d t \\
& =\sin (2 \pi)-\sin (0) \\
& =\left.\sin t\right|_{0} ^{2 \pi}
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) Find the total distance traveled over the time interval }[0,2 \pi] \\
& \begin{array}{r}
V(t)=0 \quad \text { distance }=\int_{0}^{\pi / 2} \cos t d t+\left|\int_{\pi / 2}^{3 \pi / 2} \cos t d t\right|+\int_{\frac{3 \pi}{2}}^{2 \pi} \cos t d t \\
\cos t=0 \\
\\
\quad=\left.\sin t\right|_{0} ^{\pi / 2}+|\sin t|_{\pi / 2}^{3 \pi / 2}|+\sin t|_{3 \pi}^{2 \pi} \\
t=\frac{3 \pi}{2} \\
\end{array} \quad=\sin \frac{\pi}{2}-\sin \theta+\left|\sin \frac{3 \pi}{2}-\sin \frac{\pi}{2}\right|+\sin 2 \pi-\sin \frac{3 \pi}{2}
\end{aligned}
$$



$$
\begin{aligned}
& =1-0+|-1-1|+0-(-1) \\
& =1+|-2|+1 \\
& =4
\end{aligned}
$$

