6.1 Reciprocal, Quotient and Pythagorean Identities

Wednesday, May 12, 2021 8:51 AM

Pre-Calculus 12
6.1 Reciprocal, Quotient and Pythagorean Identities

Trig Identity: A trig equation that is true for all permissible values of the variable on both sides of the equation.

1. Verify that the trig identity is true for $\theta=\frac{\pi}{3}$

$$
\begin{aligned}
\left(\frac{\sqrt{3}}{1}-1\right)^{2} & =(2)^{2}-2\left(\frac{\sqrt{3}}{1}\right) \\
(\sqrt{3}-1)(\sqrt{3}-1) & =4-2 \sqrt{3} \\
3-\sqrt{3}-\sqrt{3}+1 & =4-2 \sqrt{3} \\
4-2 \sqrt{3} & =4-2 \sqrt{3}
\end{aligned}
$$

Reciprocal Identities

$$
\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \cot \theta=\frac{1}{\tan \theta}
$$

Pre-Calculus 12

Quotient Identities

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}
$$

2. Simplify the identity.

$$
\begin{array}{ll}
\sin \theta \cot \theta=\cos \theta & \text { Show the left and } \\
\sin \theta\left(\frac{\cos \theta}{\sin \theta}\right)=\cos \theta & \begin{array}{l}
\text { right to be the } \\
\text { same }
\end{array} \\
\cos \theta=\cos \theta & \cot \theta=\frac{\cos \theta}{\sin \theta}
\end{array}
$$

3. Simplify to a single trig function

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}
$$

$$
\csc \theta=\frac{1}{\sin \theta}
$$

Pre-Calculus 12
Pythagorean Identities

$$
\begin{aligned}
& \sin \theta=\frac{y}{r} \quad \tan \theta=\frac{y}{x} \\
& \cos \theta=\frac{x}{r}
\end{aligned}
$$

$$
\begin{array}{l|l|l}
\frac{x^{2}}{r^{2}}+\frac{y^{2}}{r^{2}}=\frac{r^{2}}{r^{2}} & \frac{x^{2}+y^{2}=r^{2}}{x^{2}} \frac{r^{2}}{x^{2}} & \frac{x^{2}}{y^{2}}+\frac{y^{2}}{y^{2}}=\frac{r^{2}}{y^{2}} \\
\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}=1 & 1+\left(\frac{y}{x}\right)^{2}=\left(\frac{r}{x}\right)^{2} & \left(\frac{x}{y}\right)^{2}+1=\left(\frac{r}{y}\right)^{2} \\
\cos ^{2} \theta+\sin ^{2} \theta=1 & 1+\tan ^{2} \theta=\sec ^{2} \theta & \cot ^{2} \theta+1=\csc ^{2} \theta
\end{array}
$$

4. Simplify to a single trig function

$$
\begin{array}{ll}
\sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta \sec \theta\right. & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\sin \theta(1) \sec \theta & \sec \theta=\frac{1}{\cos \theta} \\
\sin \theta \sec \theta & \\
\sin \theta\left(\frac{1}{\cos \theta}\right) & \frac{\sin \theta}{\cos \theta}=\tan \theta \\
\frac{\sin \theta}{\cos \theta} & \\
\tan \theta &
\end{array}
$$

Pre-Calculus 12
5. Simplify to a single trig function

$$
\frac{\tan \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\sec \theta}
$$

$$
\frac{\tan \theta(1)}{\sec \theta}
$$

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sec \theta=\frac{1}{\cos \theta} \\
& \tan \theta=\frac{\sin \theta}{\cos \theta}
\end{aligned}
$$

$$
\frac{\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}}
$$

$$
\frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{1}=\sin \theta
$$

6. Simplify to a single trig function

$$
\begin{aligned}
& \quad(\tan \theta-1)^{2}+2 \sin \theta \sec \theta \quad \text { FOIL } \\
& (\tan \theta-1)(\tan \theta-1)+2 \sin \theta \sec \theta \\
& \tan \theta-\tan \theta-\tan \theta+1+2 \sin \theta \sec \theta \\
& \tan ^{2} \theta-2 \tan \theta+1+2 \sin \theta \sec \theta \\
& \tan ^{2} \theta-2 \tan \theta+1+2 \sec \theta=\left(\frac{1}{\cos \theta}\right) \\
& \tan ^{2} \theta-2 \tan \theta+1+\frac{1 \sin \theta}{\cos \theta} \\
& \tan ^{2} \theta-2 \tan \theta+1+2 \tan \theta \\
& \tan ^{2} \theta+1 \\
& \sec ^{2} \theta
\end{aligned}
$$

