6.2 Setting Up Integrals: Volume, Density, Average Value

Volume as the integral of Cross-Sectional Area:

Let $A(x)$ be the area of the cross-section that is perpendicular to the x-axis.

Volume $=\int_{a}^{b} A(x) d x$

$A(x)$ or $A(y)$
Area square

Let $A(Y)$ be the area of the cross-section that is perpendicular to the y-axis.
Area semicircle Area triangle

Volume $=\int_{c}^{d} A(y) d y$ Area rectangle

1. Find the volume of the solid whose base is bounded by the circle, $x^{2}+y^{2}=4$, with the crosssections of squares perpendicular to the x-axis.

$$
\begin{aligned}
& \text { base }=2 \sqrt{4-x^{2}} \\
& A(x)=\text { area square } \\
& A(x)=\text { (base)(base } \\
& A(x)=2 \sqrt{4-x^{2}} \cdot 2 \sqrt{4-x^{2}} \\
& A(x)=4\left(4-x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+y^{2}=r^{2} \\
& r^{2}=4 \\
& \text { radius }=2 \\
& \text { center } \\
& (0,0) \\
& x^{2}+y^{2}=4 \\
& y^{2}=4-x^{2} \\
& y= \pm \sqrt{4-x^{2}} \\
& y=\sqrt{4-x^{2}} \\
& \int_{2}^{2} 4\left(4-x^{2}\right) d x \\
& V=4\left[4 x-\frac{1}{3} x^{3}\right]_{-2}^{2} \\
& V=4\left[8-\frac{8}{3}-\left(-8+\frac{8}{3}\right)\right] \\
& V=4\left[8-\frac{8}{3}+8-\frac{8}{3}\right] \\
& V=4\left[\frac{32}{3}\right] \\
& V=\frac{128}{3}
\end{aligned}
$$

Radial Density Function: $p(r)$ is a function that depends on the distance r from the center of a city. It determines the population density (people per square kilometer or mile)

The actual population \boldsymbol{P} within a radius R is given by

$$
P=2 \pi \int_{0}^{R} r p(r) d r
$$

2. A national park density function is o has a high density of gorillas. Suppose that the radial large grassy cleari. ;orillas per square kilometer, where r is the distance from a
\qquad and water. Calculate the number of gorillas within@ 5 km radius of the clearing.

$$
\begin{aligned}
u & =1+r^{2} \\
\frac{d u}{d r} & =2 r \\
\frac{d u}{2} & =r d r
\end{aligned}
$$

$$
\begin{aligned}
& P=104 \pi \int_{r=0}^{r=5} u^{-2} \cdot \frac{d u}{2} \\
& P=52 \pi\left[\frac{u^{-1}}{-1}\right]_{r=0}^{r=5} \\
& P=52 \pi\left[\frac{-1}{1+r^{2}}\right]_{0}^{5}
\end{aligned}
$$

$$
p=52 \pi\left[\frac{-1}{1+5^{2}}-\frac{-1}{1+0^{2}}\right]
$$

$$
=52 \pi\left[\frac{-1}{26}+1\right]
$$

$$
\begin{aligned}
& =52 \pi[\overline{26}] \\
& =52 \pi\left[2 \frac{20}{20}\right]=50 \pi \approx 157 \text { gorillas }
\end{aligned}
$$

Average Value: The average value of an integrable function $f(x)$ on $[a, b]$ is the quantity

Mean Value theorem for integrals: If $f(x)$ is continuous on $[a, b]$, then there exists a value c on $[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

3. Find the average value of $f(x)=3 x^{2}-2 x$ on the interval $[1,4]$.
4. Let M be the average value of $f(x)=2 x^{2}$ on $[0,2]$. Find a value c such that $f(c)=M$

$$
\begin{aligned}
& M=\frac{1}{2-0} \int_{0}^{2} 2 x^{2} d x \\
& M=\frac{1}{2}\left[\frac{2}{3} x^{3}\right]_{0}^{2} \\
& M=\frac{1}{2}\left[\frac{2}{3}(2)^{3}-\frac{2}{3}(0)\right]
\end{aligned}
$$

$$
f(c)=M
$$

$$
c= \pm \frac{2}{\sqrt{3}}
$$

$$
2 c^{2}=\frac{8}{3}
$$

$$
c^{2}=\frac{4}{3} \quad \text { ont re interval }[0,2]
$$

$$
\begin{aligned}
& \text { Average }=\frac{1}{4-1} \int_{\text {value }}^{4}\left(3 x^{2}-2 x\right) d x \\
& \begin{array}{l}
\text { Average } \\
\text { Value }
\end{array}=\frac{1}{3}\left[4^{3}-4^{2}-\left(1^{3}-1^{2}\right)\right] \\
& =\frac{1}{3}[64-16] \\
& =\frac{48}{3}=16
\end{aligned}
$$

