6.2 Setting Up Integrals: Volume, Density, Average Value

Volume as the integral of Cross-Sectional Area:

Let $A(x)$ be the area of the cross-section that is perpendicular to the x-axis.

Volume $=\int_{a}^{b} A(x) d x$

Let $A(x)$ be the area of the cross-section that is perpendicular to the y-axis.

Volume $=\int_{c}^{d} A(y) d y$

1. Find the volume of the solid whose base is bounded by the circle, $x^{2}+y^{2}=4$, with the crosssections of squares perpendicular to the x-axis.

-			
-			

Radial Density Function: $p(r)$ is a function that depends on the distance r from the center of a city. It determines the population density (people per square kilometer or mile)

The actual population P within a radius R is given by

$$
P=2 \pi \int_{0}^{R} r p(r) d r
$$

2. A national park in the Republic of Congo has a high density of gorillas. Suppose that the radial density function is $p(r)=52\left(1+r^{2}\right)^{-2}$ gorillas per square kilometer, where r is the distance from a large grassy clearing with a source of food and water. Calculate the number of gorillas within a 5 km radius of the clearing.

Average Value: The average value of an integrable function $f(x)$ on $[a, b]$ is the quantity

$$
\text { Average value }=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Mean Value theorem for integrals: If $f(x)$ is continuous on $[a, b]$, then there exists a value c on $[a, b]$ such that

$$
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

3. Find the average value of $f(x)=3 x^{2}-2 x$ on the interval $[1,4]$.
4. Let M be the average value of $f(x)=2 x^{2}$ on $[0,2]$. Find a value c such that $f(c)=M$
