6.3 Volumes of Revolution Part 1

Disc Method:

$$
\begin{aligned}
\text { Volume } & =\text { area } x \text { thickness } \\
& =\pi r^{2} h
\end{aligned}
$$

Horizontal Axis of Rotation: If $R(x)$ is continuous and $R(x) \geq 0$ on $[a, b]$ then the solid obtained by rotating the region under the graph about the x -axis has volume:

1. Calculate the volume of the solid obtained by rotating the region under $x+y=2$ bounded by the lines $x=0$ and $y=0$ about the x-axis.

$$
\begin{aligned}
& V=-x+2 \\
& V \int_{0}^{2}(-x+2)^{2} d x \\
& V=\pi \int_{0}^{2}\left(x^{2}-4 x+4\right) d x \\
& V=\pi\left[\frac{1}{3} x^{3}-\frac{4 x^{2}}{2}+4 x\right]_{0}^{2} \\
& V=\pi\left[\frac{8}{3}-8+8-0\right] \\
& V=\frac{8 \pi}{3}
\end{aligned}
$$

AP Calculus
2. Find the volume of the solid obtained by rotating the region under the graph of the function about the x -axis over the given interval. $f(x)=\frac{1}{x^{2}} \quad[1,4]$

$$
\begin{aligned}
& f(1)=1 \\
& f(4)=\frac{1}{16}
\end{aligned}
$$

$$
\begin{aligned}
& V=\pi \int_{1}^{4}\left(\frac{1}{x^{2}}\right)^{2} d x \\
& V=\pi \int_{1}^{4} \frac{1}{x^{4}} d x \\
& V=\left.\pi\left(\frac{x^{-3}}{-3}\right)\right|_{1} ^{4} \\
& V=-\frac{\pi}{3}\left[\frac{1}{4^{3}}-\frac{1}{1^{3}}\right] \\
& V=-\frac{\pi}{3}\left[\frac{1}{64}-\frac{64}{64}\right]=-\frac{\pi}{3}\left(-\frac{63}{64}\right) \\
&
\end{aligned}
$$

Vertical Axis of Rotation: If $R(x)$ is continuous and $R(x) \geq 0$ on $[c, d]$ then the solid obtained by rotating the region under the graph about the y-axis has volume:

3. Find the volume of a solid generated when the region under $f(x)=2 x$ is rotated about the y-axis from $\mathrm{x}=0$ to $\mathrm{x}=2$.

$$
\begin{aligned}
& x=0 \quad \begin{array}{l}
x=2 \\
y=0 \quad y=4 \\
V=\pi \int_{0}^{4}\left(\frac{y}{2}\right)^{2} d y \\
V=\frac{\pi}{4} \int_{0}^{4} y^{2} d y \\
V=\frac{11}{4}\left(\frac{y^{3}}{3}\right)^{4} \\
V=\frac{\pi}{12}\left(4^{3}-0\right)
\end{array}
\end{aligned}
$$

$$
y=2 x
$$

$$
\frac{y}{2}=x
$$

$$
\text { radius }=\frac{Y}{2}
$$

$$
V=\frac{16 \pi}{3}
$$

4. Find the volume of the solid formed by revolving the region bounded by $f(x)=2-x^{2}$ and $g(x)=1$ about the line $y=1$.

$$
\begin{aligned}
& -1=-x^{2} \\
& x= \pm 1 \quad[-1,1]
\end{aligned}
$$

$$
\begin{aligned}
& \text { radius }=2-x^{2}-1 \\
& V=1-x^{2} \quad V=\pi \int_{-1}^{1}\left(1-x^{2}\right)^{2} d x \\
& V=\pi \int_{-1}^{1}\left(1-2 x^{2}+x^{4}\right) d x \\
& V=\pi\left[x-\frac{2 x^{3}}{3}+\frac{1}{5} x^{5}\right]_{-1}^{1} \\
& V=\pi\left[1-\frac{2}{3}+\frac{1}{5}-\left(-1+\frac{2}{3}-\frac{1}{5}\right)\right] \\
& V=\pi\left[\frac{15}{15}-\frac{10}{15}+\frac{3}{15}+\frac{15}{15}-\frac{10}{15}+\frac{3}{15}\right] \\
& V=16 \pi / 15
\end{aligned}
$$

$$
1=2-x^{2}
$$

