6.3 Volumes of Revolution Part 2

Washer Method:

The washer method is an extension of the disc method. Use the washer method when your 2dimensional graph is not bounded by the axis of rotation, resulting in a 3 -dimensional object with a (hole).

If a region is revolved about a horizontal axis where $R(x)$ is the outer radius and $r(x)$ is the inner radius then,
$V=\pi \int_{a}^{b}[R(x)]^{2} d x-\pi \int_{a}^{b}[r(x)]^{2} d x$

1. Find the volume of the solid formed by revolving the region bounded by the graphs of $y=\sqrt{x}$ and $y=x^{2}$ about the x-axis. 2

$$
\begin{aligned}
& \sqrt{X}= \\
& R(x)=\sqrt{x} \quad r(x)=x^{2} \\
& V=\pi \int_{0}^{1}\left((\sqrt{x})^{2}-\left(x^{2}\right)^{2}\right) d x \\
& V=\pi \int_{0}^{1}\left(x-x^{4}\right) d x \\
& V=\pi\left[\frac{1}{2} x^{2}-\frac{1}{5} x^{5}\right]_{0}^{1} \\
& 0=x^{4}-x \\
& 0=x\left(x^{3}-1\right) \\
& V=\pi\left[\frac{1}{2}-\frac{1}{5}-0\right] \\
& V=\pi\left[\frac{5}{10}-\frac{2}{10}\right]=\frac{3 \pi}{10} \\
& x=0 \quad x=1 \quad a=0 \quad b=1
\end{aligned}
$$

2. Find the volume of the solid formed by revolving the region bounded by the graph of $y=x^{2}$ and the line $y=4$ about the x-axis.

$$
R(x)=4, \quad r(x)=x^{2}
$$

$$
V=\pi \int_{-2}^{2}\left(4^{2}-\left(x^{2}\right)^{2}\right) d x
$$

$$
x^{2}=4
$$

$$
x= \pm 2
$$

$$
\begin{aligned}
(1) & =\pi \int_{-2}^{-2}\left(16-x^{4}\right) d x \\
V & =\pi\left[16 x-\frac{1}{5} x^{5}\right]_{-2}^{2} \\
V & =\pi\left[32-\frac{32}{5}-\left(-32+\frac{32}{5}\right)\right] \\
V & =\pi\left[32-\frac{32}{5}+32-\frac{32}{5}\right]=\pi\left[\frac{320}{5}-\frac{64}{5}\right]=\frac{256 \pi}{5}
\end{aligned}
$$

$a=-2 \quad b=2$
3. Find the volume of the solid formed by revolving the region bounded by the graphs of $y=4-x^{2}$ and the line $y=2-x$ about the x-axis.

$$
\begin{aligned}
& R(x)=4-x^{2} \quad r(x)=2-x \\
& V=\pi \int_{-1}^{2}\left(\left(4-x^{2}\right)^{2}-(2-x)^{2}\right) d x \\
& V=\pi \int_{-1}^{2}\left(16-8 x^{2}+x^{4}-4+4 x-x^{2}\right) d x \\
& V=\pi \int_{-1}^{2}\left(x^{4}-9 x^{2}+4 x+12\right) d x \\
& V=\pi\left[\frac{1}{5} x^{5}-3 x^{3}+2 x^{2}+12 x\right]_{-1}^{2} \\
& 0=x^{2}-x-2 \\
& 0=(x-2)(x+1) \\
& x=2 \quad x=-1 \\
& V=\pi\left[\frac{32}{5}-24+8+24-\left(-\frac{1}{5}+3+2-12\right)\right] \\
& V=\pi\left[32 / 5+8+\frac{1}{5}-3-2+12\right]=\frac{108 \pi}{5}
\end{aligned}
$$

If we revolve a region about a vertical axis the volume formula becomes:

$$
V=\frac{11}{C} \int_{C}^{d} /[R(y)]^{2}-\left[(r(y)]^{2}\right) d y
$$

4. Find the volume of the solid formed by revolving the region bounded by the graph of $y=x^{3}$ and the lines $x=2$ and $y=0$ about the y-axis.

$$
\begin{aligned}
& x=0 \quad y=0^{3}=0 \\
& x=1 \quad y=1^{3}=1 \\
& R(y)=2 \\
& y=x^{3} \quad x=2 \quad y=2^{3}=8 \\
& y^{\frac{1}{3}}=x \\
& r(y)=y^{\frac{1}{3}} \\
& V=\pi \int_{0}^{8}\left(2^{2}-\left(y^{\frac{1}{3}}\right)^{2}\right) d y \\
& V=\pi \int_{j}^{8}\left(4-y^{\frac{2}{3}}\right) d y \\
& V=\pi\left[4 y-\frac{3 y^{5 / 3}}{5}\right]_{0}^{8} \\
& V=\pi\left[32-\frac{3}{5}(32)-0\right] \\
& V=\pi\left[\frac{160}{5}-\frac{96}{5}\right] \\
& V=\frac{64 \pi}{5}
\end{aligned}
$$

