6.4 Volumes of Revolution

Shell Method:
The shell method is an alternative method for finding the volume of a solid of revolution. It uses cylindrical shells instead of washers or discs.

Volume of shell = (Area of rectangle)(Thickness of shell)
Area of rectangle)(Thickness of shell)

$$
=(2 \pi r \cdot h) \Delta r
$$

Volume of revolution using the shell method: Axis of rotation (y-axis)

$$
V=2 \pi \int_{a}^{b}(\text { radius })(\text { height of shell }) d x=2 \pi \int_{a}^{b} x \cdot f(x) d x
$$

1. Find the volume of the solid formed by revolving the region bounded by the graphs of $y=2 x$ and the lines $x=0$ and $y=4$ about the y-axis.

$$
\begin{aligned}
& r=x \\
& h=4-2 x
\end{aligned}
$$

$$
\begin{aligned}
& \text { nev-xaxis. } \\
& y=2 x \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& V=2 \pi \int_{0}^{2} x(4-2 x) d x \\
& V=2 \pi \int_{0}^{2}\left(4 x-2 x^{2}\right) d x \\
& V=2 \pi\left[2 x^{2}-\frac{2}{3} x^{3}\right]_{0}^{2} \\
& V=2 \pi\left[8-\frac{16}{3}-0\right] \\
& V=2 \pi\left[\frac{24}{3}-\frac{16}{3}\right]=\frac{16 \pi}{3}
\end{aligned}
$$

Solid of Revolution
2. Find the volume of the solid formed by revolving the region bounded by the graph of $y=x^{2}+1$ and

Disc for $0 \leq y<1$ then washer for $1 \leq y \leq 2$ use shells instead.

$$
\begin{aligned}
& r=x \\
& h=x^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& V=2 \pi \int_{0}^{1} x\left(x^{2}+1\right) d x \\
& V=2 \pi \int_{0}^{0}\left(x^{3}+x\right) d x \\
& V=2 \pi\left[\frac{x^{4}}{4}+\frac{x^{2}}{2}\right]_{0}^{1} \\
& V=2 \pi\left[\frac{1}{4}+\frac{1}{2}-0\right]^{3}=2 \pi\left[\frac{3}{4}\right]=\frac{3 \pi}{2}
\end{aligned}
$$

3. Find the volume of the solid formed by revolving the region bounded by the graph of $y=x-x^{3}$ bounded by the x-axis $0 \leq x \leq 1$ about the y-axis.

$$
\begin{aligned}
& r=x \\
& h=x-x^{3}
\end{aligned}
$$

$x=.5$
y
$y=$
y

$$
\begin{aligned}
& y=.375 \\
& V=2 \pi \int_{0}^{1} x\left(x-x^{3}\right) d x \\
& V=2 \pi \int_{0}^{1}\left(x^{2}-x^{4}\right) d x \\
& V=2 \pi\left[\frac{x^{3}}{3}-\frac{x^{5}}{5}\right]_{0}^{1} \\
& V=2 \pi\left[\frac{1}{3}-\frac{1}{5}-0\right] \\
& V=2 \pi\left[\frac{5}{15}-\frac{3}{15}\right]=\frac{4 \pi}{15}
\end{aligned}
$$

Volume of revolution using the shell method: Axis of rotation (x-axis)

$$
V=2 \pi \int_{c}^{d}(\text { radius })(\text { height of shell }) d y=2 \pi \int_{c}^{d}(y \cdot f(y)) d v
$$

4. Find the volume of the solid formed by revolving the region bounded by the graph of $y=2 x$ and the lines $x=2$ and $y=0$ about the x-axis.

$$
\begin{aligned}
& y=2 x \\
& \frac{y}{2}=x
\end{aligned}
$$

$$
\begin{aligned}
& r=y \\
& h=2-\frac{y}{2}
\end{aligned}
$$

$$
\begin{aligned}
& V=2 \pi \int_{0}^{4} y\left(2-\frac{y}{2}\right) d y \\
& V=2 \pi \int_{0}^{4}\left(2 y-\frac{y^{2}}{2}\right) d y \\
& V=2 \pi\left[y^{2}-\frac{y^{3}}{6}\right]_{0}^{4} \\
& V=2 \pi\left[16-\frac{64}{6}-0\right] \\
& V=2 \pi\left[\frac{48}{3}-\frac{32}{3}\right] \\
& V=2 \pi\left[\frac{16}{3}\right]=\frac{32 \pi}{3}
\end{aligned}
$$

