6.1 Reciprocal, Quotient and Pythagorean Identities

Pre-Calculus 12

6.1 Reciprocal, Quotient and Pythagorean Identities

Trig Identity: A trig equation that is true for all permissible values of the variable on both sides of the equation.

1. Verify that the trig identity is true for $\theta=\frac{\pi}{3}$

$$
(\tan \theta-1)^{2}=\sec ^{2} \theta-2 \tan \theta
$$

Reciprocal Identities

Pre-Calculus 12

Quotient Identities

2. Simplify the identity.

$$
\sin \theta \cot \theta=\cos \theta
$$

3. Simplify to a single trig function

$$
\frac{\cot \theta}{\csc \theta \cos \theta}
$$

Pre-Calculus 12

Pythagorean Identities

4. Simplify to a single trig function

$$
\begin{gathered}
\sin \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \sec \theta \\
\sin \theta(1) \sec \theta \\
\sin \theta \sec \theta \\
\sin \theta\left(\frac{1}{\cos \theta}\right) \\
\frac{\sin \theta}{\cos \theta} \\
\tan \theta
\end{gathered}
$$

Pre-Calculus 12

Pre-Calculus 12
5. Simplify to a single trig function

$$
\begin{array}{lr}
\begin{array}{lr}
\frac{\tan \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}{\sec \theta} & \sin ^{2} \theta+\cos ^{2} \theta=1 \\
\frac{\tan \theta(1)}{\sec \theta} & \tan \theta=\frac{\sin \theta}{\cos \theta} \\
\frac{\tan \theta}{\sec \theta} & \sec \theta=\frac{1}{\cos \theta}
\end{array},
\end{array}
$$

6. Simplify to a single trig function

$$
\begin{aligned}
& (\tan \theta-1)(\tan \theta-1)^{2}+2 \sin \theta-\sec \theta \\
& \tan ^{2} \theta-2 \tan \theta-\tan \theta+1+2 \sec \theta \\
& \tan ^{2} \theta-2 \tan \theta+1+2 \sec \theta \\
& \tan ^{2} \theta-2 \tan \theta+1+2 \sec \theta \cdot \frac{1}{\cos \theta} \\
& \tan ^{2} \theta-2 \tan \theta+1+2 \tan \theta \\
& \tan ^{2} \theta+1 \\
& \sec ^{2} \theta
\end{aligned}
$$

6.2 Sum Difference and Double Angle Identities

Pre-Calculus 12
6.2 Sum Difference and Double Angle Identities

Sum Identities

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \tan (A+B)=\frac{\tan A+\tan B}{1-\tan A \tan B}
\end{aligned}
$$

Difference Identities

$$
\begin{aligned}
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& \tan (A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 1. Simplify to a single trig function } \\
& \begin{array}{l}
\sin \frac{\pi}{8} \cos \frac{3 \pi}{5}+\cos \frac{\pi}{8} \sin \frac{3 \pi}{5}
\end{array} \quad \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& =\sin \left(\frac{\pi}{8}+\frac{3 \pi}{5}\right) \quad \text { Make the left side } \\
& =\sin \left(\frac{5 \pi}{40}+\frac{24 \pi}{40}\right) \quad \text { Using our angles } \\
& =\sin \frac{29 \pi}{40}
\end{aligned}
$$

Pre-Calculus 12

$$
\begin{aligned}
& \frac{\pi}{12}=\frac{4 \pi}{12}-\frac{3 \pi}{12} \\
& \frac{\pi}{12}=\frac{\pi}{3}-\frac{\pi}{4}
\end{aligned}
$$

2. Find an exact value for $\cos \frac{\pi}{12}$

$$
\begin{aligned}
\cos (A-B) & =\cos A \cos B+\sin A \sin B \\
\cos \left(\frac{\pi}{3}-\frac{\pi}{4}\right) & =\cos \frac{\pi}{3} \cos \frac{\pi}{4}+\sin \frac{\pi}{3} \sin \frac{\pi}{4} \\
& =\left(\frac{1}{2}\right)\left(\frac{1}{\sqrt{2}}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{\sqrt{2}}\right) \\
& =\frac{1}{2 \sqrt{2}} \sqrt{2}+\frac{\sqrt{3}}{2 \sqrt{2}} \sqrt{2} \\
& =\frac{\sqrt{2}}{4}+\frac{\sqrt{6}}{4} \\
& =\frac{\sqrt{2}+\sqrt{6}}{4}
\end{aligned}
$$

3. Simplify and create a double angle identity

$$
\begin{aligned}
\sin (2 A)=\sin (A+A) \quad \cos (2 A) & =\cos (A+A) \\
& =\sin A \cos A+\cos A \sin A \quad=\cos A \cos A-\sin A \sin A \\
\sin 2 A & =2 \sin A \cos A \quad \cos 2 A
\end{aligned}
$$

$$
\begin{aligned}
\tan (2 A) & =\tan (A+A) \\
& =\frac{\tan A+\tan A}{1-(\tan A)(\tan A)} \\
\tan 2 A & =\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

Pre-Calculus 12

Double Angle Identities
$\sin 2 A=2 \sin A \cos A$

$$
\begin{aligned}
& \cos 2 A=\left\{\begin{array}{c}
\cos ^{2} A-\sin ^{2} A \\
2 \cos ^{2} A-1 \\
1-2 \sin ^{2} A
\end{array}\right. \\
& \tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
\end{aligned}
$$

4. Write as a single trig function

$$
\tan 2 A=\frac{2 \tan A}{1-\tan ^{2} A}
$$

$$
3\left(\frac{2 \tan 20^{\circ}}{1-\tan ^{2} 20^{\circ}}\right)
$$

$$
3\left(\tan 2\left(20^{\circ}\right)\right)
$$

$$
3 \tan 40^{\circ}
$$

$$
\begin{aligned}
& 5\left(2 \cos ^{2} \frac{\pi}{12}-1\right) \\
& 5\left(\cos 2\left(\frac{\pi}{12}\right)\right) \\
& 5 \cos \frac{\pi}{6} \\
& \frac{5\left(\frac{\sqrt{3}}{2}\right)}{12} \\
& \frac{5 \sqrt{3}}{2}
\end{aligned}
$$

5. Evaluate without a calculator

$$
\cos 2 A=2 \cos ^{2} A-1
$$

Pre-Calculus 12
6. Evaluate without a calculator

$$
\begin{aligned}
\frac{1}{2}(\text { Right }) & \frac{1}{2}\left(2 \sin \frac{\pi}{8} \cos \frac{\pi}{8}\right) \\
\frac{1}{2}(\text { left }) \quad & \frac{1}{2}\left(\sin 2\left(\frac{\pi}{8}\right)\right) \\
& \frac{1}{2} \sin \frac{\pi}{4}=\frac{1}{2}\left(\frac{1}{\sqrt{2}}\right)=\frac{1}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{4}
\end{aligned}
$$

$\sin 2 A=2 \sin A \cos A$

7. If $\cos \theta=\frac{-1}{3}$ Ind $\frac{\pi}{2} \leq \theta \leq \pi$, find a value for:

$$
\begin{aligned}
& \cos \theta=\frac{-1}{3} \\
& \cos \theta=\frac{x}{r} \\
& x=-1 \quad r=3
\end{aligned}
$$

$$
x^{2}+y^{2}=r^{2}
$$

$$
\begin{aligned}
(-1)^{2}+y^{2} & =3^{2} \\
2 & =9
\end{aligned}
$$

$$
1+y^{2}=9
$$

$$
y^{2}=8
$$

b) $\cos (\theta+\pi)$

$$
y=\sqrt{8}
$$

$$
\begin{aligned}
& \sin 2 \theta=2 \sin \theta \cos \theta \\
&=\frac{2}{1}\left(\frac{\sqrt{8}}{3}\right)\left(\frac{-1}{3}\right) \\
&=\frac{-2 \sqrt{8}}{9} \\
&=\frac{-2(2 \sqrt{2})}{9} \\
&=\frac{-4 \sqrt{2}}{9} \quad \cos (\\
& \frac{12}{\sqrt{2}} \\
&=(-1,0) \\
& r=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { b) } \cos (\theta+\pi \\
& \cos (A+B)
\end{aligned}=\cos A \cos B-\sin A \sin B
$$

$$
\begin{aligned}
\cos (A+B) & =\cos A \cos B-\sin 1 \\
& =\cos \theta \cos \pi-\sin \theta \sin \pi \\
& =\left(\frac{-1}{3}\right)\left(\frac{-1}{1}\right)-\left(\frac{\sqrt{8}}{3}\right)\left(\frac{0}{1}\right) \\
& =1-0
\end{aligned}
$$

$$
=\frac{1}{3}-0
$$

$$
=1 / 3
$$

6.3 Part 1 New

Tuesday, April 18, 2023 12:43 PM

Chapter 6 Page 9
a) $\frac{3}{7}+\frac{2}{5}$
b) expand $5(2 x+3)$
c) factor $6 x^{2}-12 x$
(5) $\frac{3}{7}+\frac{2}{5}(7)$

$$
(5) 7 \quad 5(7)
$$

$$
\frac{15}{35}+\frac{14}{35}
$$

$$
\begin{aligned}
& \frac{29}{35} \\
& \text { Prove } \frac{25}{35}
\end{aligned}
$$

$$
\text { Prove } \mathrm{tne} \text { Identities }
$$

$$
\begin{array}{cc}
5(2 x)+5(3) & G C F 6 x \\
10 x+15 & 6 x(x-2) \\
& (m-2)(m+1)
\end{array}
$$

$$
\begin{aligned}
& \text { 1. } \sec \theta(1+\cos \theta)=1+\sec \theta \\
& \sec \theta(1)+\sec \theta(\cos \theta)=\text { RS } \\
& \sec \theta+\frac{1}{\cos \theta} \cos \theta=\text { RS } \\
& \sec \theta+1=1+\sec \theta
\end{aligned}
$$

work on the more complicated side Expand

$$
\sec \theta=\frac{1}{\cos \theta}
$$

Change into sin and $\cos \theta$

Find a common denominator

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$ pythagorean, ideality

$\frac{\sin \theta}{\sin \theta} \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \cos \theta \theta^{\circ}=R . S$

$$
\begin{aligned}
\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \sigma} & =R . S \\
& =R . S
\end{aligned}
$$

$$
\begin{aligned}
& \sin \theta \cos \theta \frac{1}{\sin \theta \cos \theta} \\
&=R . S \\
& 1.1=R . S
\end{aligned}
$$

$$
\text { Mr. Shaw } \frac{\frac{1}{\sin \theta \cos \theta} \cdot \frac{1}{\sin \theta} \cos \theta}{=\sec \theta}
$$

$$
\sin \theta \cos \theta=\sec \theta \csc \theta
$$

$$
\begin{aligned}
& \text { 3. } \sec ^{4} \theta-\sec ^{2} \theta=\tan ^{4} \theta+\tan ^{2} \theta \\
& \text { Factor } \\
& \sec ^{2} \theta\left(\sec ^{2} \theta-1\right)=\text { R.S } \\
& \left(1+\tan ^{2} \theta\right)\left(\sec ^{2} \theta-1\right)=R . S \\
& \text { pythagorean } \\
& 1+\tan ^{2} \theta=\sec ^{2} \theta \\
& \left(1+\tan ^{2} \theta\right)\left(1+\tan ^{2} \theta-1\right)=R . S \\
& \left(1+\tan ^{2} \theta\right)\left(\tan ^{2} \theta\right)=\text { R.S Expand } \\
& \tan ^{2} \theta+\tan ^{4} \theta=\tan ^{4} \theta+\tan ^{2} \theta \\
& \frac{(1-\cos \theta)}{(1-\cos \theta) \frac{1}{1+\cos \theta}}+\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}=2 \csc ^{2} \theta \cdot\left(\frac{1}{1-\cos \theta} \cdot \frac{(1+\cos \theta)}{(1+\cos \theta)}=\right.\text { R.S } \\
& \frac{1-\cos \theta+1+\cos \theta}{(1-\cos \theta)(1+\cos \theta)}=R . S . \\
& \frac{2}{1+\cos \theta-\cos \theta-\cos ^{2} \theta}=\text { R.S } \\
& \frac{2}{1-\cos ^{2} \theta}=R . S \\
& \frac{2}{\sin ^{2} \theta}=\text { R.S } \quad \csc \theta=\frac{1}{\sin \theta} \\
& \text { Mrs. Shaw } \\
& \text { 2. } \frac{1}{\sin ^{2} \theta}=\text { R.S } \\
& \xrightarrow[\sin ^{2} \theta=1-\cos ^{2} \theta]{\cos ^{2} \theta+\sin ^{2} \theta=1} \\
& 2 \csc ^{2} \theta=2 \csc ^{2} \sigma
\end{aligned}
$$

6.3 Part 2 New

Tuesday, April 18, 2023 2:21 PM
6.3 Part 2 Proving Identities

1. Expand using the double angle identities
a) $\sin 10 \theta=\sin (2.5 \theta)$
b) $\sin 6 x=\sin (2 \cdot 3 x)$ $=2 \sin 5 \theta \cos 5 \theta$
d) $\tan 4 \theta=\tan (2 \cdot 2 \theta)$

$$
=\cos ^{2} 4 \theta-\sin ^{2} 4 \theta
$$

$$
=\frac{2 \tan 2 \theta}{1-\tan ^{2} 2 \theta}
$$

$$
0^{\prime \prime}=1-2 \sin ^{2} 4 \theta
$$

2. Prove the Identity $\tan 2 \theta=\frac{\sin 4 \theta}{1+\cos 4 \theta}$

Mrs. Shaw

$$
\tan 2 \theta=\tan 2 \theta
$$

$$
\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}
$$

3. Prove the Identity

$$
\begin{aligned}
& \cos 2 \theta=\frac{\csc ^{2} \theta-2}{\csc ^{2} \theta} \\
& L S=\frac{\csc ^{2} \theta}{\csc ^{2} \theta}-\frac{2}{\csc ^{2} \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \csc \theta=\frac{1}{\sin \theta} \quad L S=\frac{1}{\csc \theta} \quad L-2 \cdot \frac{1}{\csc ^{2} \theta} \\
& \begin{array}{lrl}
\sin \theta & =\csc \theta & L S \\
\cos 2 \theta=1-2 \sin ^{2} \theta & \cos 2 \theta=\cos 2 \theta
\end{array} \\
& \sin \theta=\frac{1}{\csc \theta} \\
& L S=1-2 \cdot \sin ^{2} \theta \\
& \cos 2 \theta=\cos 2 \theta \\
& \text { conjugate } \\
& 4 \text { Simplify } \\
& \begin{array}{l}
\text { a) } \frac{18}{7} \div \frac{4}{21} \\
\frac{18}{7} \cdot \frac{21^{3}}{4 / 2}=\frac{27}{2}
\end{array} \\
& \begin{array}{l}
\text { b) } \frac{\sqrt{3}-\frac{5+\sqrt{2}}{5-\sqrt{2}}}{5+\sqrt{2}} \\
\frac{5 \sqrt{3}+\sqrt{6}}{5+5 \sqrt{2}-5 \sqrt{2}-\sqrt{4}}
\end{array} \\
& \frac{5 \sqrt{3}+\sqrt{6}}{25-2} \\
& \frac{5 \sqrt{3}+\sqrt{6}}{23}
\end{aligned}
$$

conjugate
$1+\sin \theta$
5. Prove the identity

$$
\begin{aligned}
& \frac{(1+\sin \theta) \cos \theta}{(1+\sin \theta)(-\sin \theta)}=\text { RS. } \\
& \frac{(1+\sin \theta) \cos \theta}{1-\sin \theta+\sin \theta-\sin ^{2} \theta}=\text { RS. } \\
& \frac{(1+\sin \theta) \cos \theta}{1-\sin ^{2} \theta}=\text { RS } \\
& \frac{(1+\sin \theta) \cos \theta}{\cos ^{2} \theta}=\text { RS } \\
& \frac{1+\sin \theta}{\cos \theta}=\frac{1+\sin \theta}{\cos \sigma}
\end{aligned}
$$

$$
\tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
\begin{aligned}
& \text { 6. Prove the identity } \frac{\sin \theta+\tan \theta}{1+\cos \theta}=\tan \theta \\
& \qquad \frac{\frac{\sin \theta}{1}+\frac{\sin \theta}{\cos \theta}}{1+\cos \sigma}=R . S .
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\cos \theta}{\cos \theta} \cdot \frac{\sin \theta}{1}+\frac{\sin \theta}{\cos \theta} \\
& \frac{\frac{\cos \theta \sin \theta+\sin \theta}{\cos \theta}}{1+\cos \theta} \\
& \frac{R S}{1+\cos \theta}=R S
\end{aligned}
$$

$$
\frac{\sin \theta(\cos \theta+1)}{\cos \theta}
$$

$$
\frac{1+\cos \theta}{1}
$$

$$
\frac{\sin \theta(\cos \theta+1)}{\cos \theta} \cdot \frac{1}{1+\cos \theta}=R . S
$$

$$
\frac{\sin \theta}{\cos \theta}=R S
$$

$$
\tan \theta=\tan \theta
$$

$$
\frac{3 x}{x-5} \quad x \neq 5
$$

Non-Permissible Values: Values of the variable that make the function undefined.

- the denominator is equal to zero
- the function has asymptotes $(\tan \theta, \csc \theta, \sec \theta, \cot \theta)$ all have asymptotes

$$
\tan \theta=\frac{\sin \theta}{\cos \theta} \csc \theta=\frac{1}{\sin \theta} \sec \theta=\frac{1}{\cos \theta}
$$

$$
\cot \theta=\frac{\cos \theta}{\sin \theta}
$$

Example 1: Determine any non-permissible values for, $0 \leq \theta<2 \pi$
a) $\frac{\cos \theta}{1-\sin \theta}$

$$
1-\sin \theta=0
$$

$$
\begin{aligned}
n \sigma & =0 \\
\frac{1}{1} & =\sin \theta
\end{aligned}
$$

' b) $3 \cot \theta$
$\cot \theta$ has asymptotes
when $\sin \theta=0$
or $\operatorname{ch} 5$ when $\sin \theta=\frac{0}{1} \quad \sin \theta$
ch 5
Ch 4

$$
y=1
$$

$r=1$

Example 2: Solve $\cos 2 \theta+1-\cos \theta=0$ over the domain $0 \leq \theta<2 \pi$. Express your answer as exact

$$
\begin{aligned}
& \cos 2 \theta+1-\cos \theta=0 \\
& 2 \cos ^{2} \theta-1+1-\cos \theta=0 \\
& \cos 2 \theta=2 \cos ^{2} \theta-1 \\
& \cos ^{2} \theta-\sin ^{2} \theta \\
& 1-2 \sin ^{2} \theta \\
& 2 \cos ^{2} \theta-\cos \sigma=0 \\
& \cos \theta(2 \cos \theta-1)=0 \\
& \cos \theta=0 \\
& 2 \cos \theta-1=0 \\
& \cos \theta=\frac{1}{2} \begin{array}{c}
x=1 \\
r=2
\end{array} \\
& 2 m^{2}-m=0 \\
& \begin{array}{l}
m(2 m-1)=0 \\
m=0 \quad 2 m-1=0
\end{array} \\
& \text { Graph } \\
& \text { ref } L=\frac{\pi}{3} \\
& \theta_{3}=\pi / 3 \\
& \theta=2 \pi-\frac{\pi}{3} \\
& \theta_{4}=5 \pi / 3
\end{aligned}
$$

Example 3: Solve $1-\cos ^{2} \theta=3 \sin \theta-2$ over the domain $0 \leq \theta<2 \pi$. Express your answer as exact values.

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

$$
\sin ^{2} \theta=3 \sin \theta-2
$$

$$
\sin ^{2} \theta-3 \sin \theta+2=0
$$

$$
\begin{aligned}
& x=2 \\
& -2+=1=-3
\end{aligned}
$$

$$
\sin ^{2} \theta=1-\cos ^{2} \theta
$$

$$
\sin ^{2} \theta=1-\cos ^{2} \theta
$$

$$
\begin{gathered}
\sin ^{2} \theta-\sin \theta-2 \sin \theta+2=0 \\
\sin \theta(\sin \theta-1)-2(\sin \theta-1)=0 \\
(\sin \theta-1)(\sin \theta-2)=0 \\
\sin \theta-1=0 \quad \sin \theta-2=0 \\
\sin \theta=1 \quad \sin \theta=2 \\
\theta=\pi / 2
\end{gathered} \quad \text { No Solution } \quad . \quad .
$$

Example 4: Solve $\cos ^{2} \theta=\cot \theta \sin \theta$ over the domain $0^{\circ} \leq \theta<360^{\circ}$. Express your answer as exact

$\cot \theta$ has asymptotes when $\sin \theta=0$ $1-\infty$

$$
\begin{aligned}
& \theta \neq 0^{\circ} \\
& \theta \neq 180^{\circ} \\
& \theta \neq 360^{\circ}
\end{aligned}
$$

PC 12

$$
\begin{aligned}
& \cos ^{2} \theta=\cot \theta \sin \theta \\
& \cos ^{2} \sigma=\frac{\cos \sigma_{0}}{\sin \sigma} \sin \theta \\
& \cos ^{2} \sigma=\cos \sigma \\
& \cos ^{2} \theta-\cos \theta=0 \\
& \cos \theta(\cos \theta-1)=0 \\
& \begin{array}{cc}
\downarrow & \downarrow \\
\cos \theta=0 & \cos \theta-1=0
\end{array} \\
& \cos \theta=0 \\
& \cos \theta=1
\end{aligned}
$$

6.4 part 2

Friday, April 21, 2023
6.4 Solving Trig Equations Using Identities - part 2

General Solutions

Example 1: Solve $\sin 2 \theta=\sqrt{2} \cos \theta$. Give the general solution in radians.

$$
\begin{gathered}
2 \sin \theta \cos \theta=\sqrt{2} \cos \theta \\
2 \sin \theta \cos \theta-\sqrt{2} \cos \theta=0 \\
\cos \theta(2 \sin \theta-\sqrt{2})=0
\end{gathered}
$$

$$
\cos \theta=0
$$

$$
2 \sin \theta-\sqrt{2}=0
$$

$$
2 \sin \theta=\sqrt{2}
$$

$$
\theta=\pi / 2 \quad \sigma=3 \pi / 2
$$

period of $\cos \theta$ is 2π

$$
\begin{aligned}
& \theta=\pi / 2+2 \pi n \quad n \in I \\
& \theta=3 \pi / 2+2 \pi n
\end{aligned}
$$

Solve $0 \leqslant \theta<2 \pi$ Use the solutions to form the general solution.

$$
\sin 2 \theta=2 \sin \theta \cos \theta
$$

Example 2: Solve $2 \sin \theta=7-3 \mathrm{Sc} \theta$ Give the general solution in radians.

$$
\begin{aligned}
& 2 \sin \theta=7-3 \cdot \frac{1}{\sin \theta} \\
& \csc \theta \text { has } \\
& \text { asymptotes } \\
& \sin \theta(2 \sin \sigma)=7^{\sin ^{-} \theta} \frac{3}{\sin \theta} \sin 2 m=7 m-\frac{3}{m} \csc \theta=\frac{1}{\sin \theta} \\
& 2 \sin ^{2} \theta=7 \sin \theta-3 \\
& 2 \sin ^{2} \theta-7 \sin \theta+3=0 \\
& 2 m^{2}=7 m-3 \\
& -x=6 \quad \theta \neq 0 \\
& 2 \sin ^{2} \theta-1 \sin \theta-6 \sin \theta+3=0-1+-6=-7 \quad \theta \neq \pi \\
& \sin \theta(2 \sin \theta-1)-3(2 \sin \theta-1)=0 \\
& (2 \sin \theta-1)(\sin \theta-3)=0 \\
& \downarrow \downarrow \\
& 2 \sin \theta-1=0 \quad \sin \theta-3=0 \\
& \sin \theta=\frac{1}{2} \quad \begin{array}{r}
y=1 \\
r=2
\end{array} \quad \sin \theta=3 \\
& \text { ref }=\frac{\pi}{6} \\
& \theta=\frac{\pi}{6} \\
& \theta=\pi-\frac{\pi}{6} \\
& \theta=5 \pi / 6 \\
& \text { when } \sin \theta=0 \\
& \text { Practice: p. } 320 \text { \#8-12, } 16 \\
& \text { Mrs. Shaw } \\
& \theta=\frac{\pi}{6}+2 \pi n \quad n \in I \\
& \sigma=\frac{5 \pi}{6}+2 \pi n
\end{aligned}
$$

2

