8.2 Transformations of Logarithmic Functions

The graph of $y=a \log _{c} b(x-h)+k$ can be obtained by transforming the graph of $y=\log _{c} x$. Use mapping notation to show the changes to the point (x, y)

Parameter	Transformation
a	$(x, y) \rightarrow(X, a y)$
b	$(x, y) \rightarrow\left(\frac{X}{b}, Y\right)$
h	$(x, y) \rightarrow(X+h, Y)$
k	$(x, y) \rightarrow(X, y+K)$

Ex. \#1: Graph the base function $y=\log _{3} x$ and the transformed function $y=\log _{3}(x+9)+4$ on the same grid. For the transformed function state the equation of the asymptote and find the intercepts.
make $\frac{x \text {-intercept }}{y=0}$
y-intercept

$$
\text { moke } x=0
$$

$$
\begin{array}{ll}
0=\log _{3}(x+9)+4 & y=\log _{3}(0+9)+4 \\
-4=\log _{3}(x+9) & y=\log _{3} 9+4 \\
-4=x+9 & y=2+4 \\
3=6 \\
\frac{1}{81}=x+9 & y=6 \\
x=\frac{1}{81}-9 & x=\frac{1}{81}-\frac{729}{81}=-\frac{728}{81}
\end{array}
$$

$$
\begin{aligned}
\log _{3} 9 & =m \\
3^{m} & =9 \\
m & =2
\end{aligned}
$$

Change of Base:
The change of base formula is often used to evaluate logarithms with a calculator when the base is not $10 . m=$ any number of your choice, however your calculator will require $m=10$

$$
\log _{c} x=\frac{\log _{m} x}{\log _{m} c}
$$

Ex. \#2: Graph the base function $y=\log _{2} x$ and the transformed function $y=-\log _{2}(2 x+6)$ on the same grid. State the equation of asymptote and find the intercepts of the transformed function accurate to 2 decimal places.

$$
\left.\begin{gathered}
y=\log _{2} x \\
2^{y}=x \\
\hline 1 / 2
\end{gathered} \right\rvert\,-1 .
$$

$$
y=-\log _{2} 2(x+3)
$$

divide x 's by 2
translated left 3

Equation of Asymptote : \qquad

x-intercept
Make $y=0$

$$
\begin{aligned}
& 0=-\log _{2}(2 x+6) \\
& 0=\log _{2}(2 x+6) \\
& 0=2 x+6 \\
& 2=2 x+6 \\
& 1=2 x=-5 / 2 \\
& -5=2 x \quad x=2
\end{aligned}
$$

y-intercept

$$
\begin{aligned}
& \text { Make } x=0 \\
& y=-\log _{2}(2(0)+6) \\
& y=-\log _{2}(6) \\
& y=-\left[\frac{\log _{10} 6}{\log _{10} 2}\right] \\
& y=-2.58
\end{aligned}
$$

Ex. \#3: The Shannon-Hartley theorem is used to determine the highest possible rate for transmitting information. The formula is $C=B \log _{2}(r+1)$, where r is the signal-to-noise ratio, B is the bandwidth in hertz, and C is the rate in bits per second.
a) Describe the transformations in the theorem, compared to the graph of $\underbrace{C=\log _{2} r}$.
Vertical stretch factor of "B"
Translate left I
b) If the bandwidth is 10000 Hz and the signal-to noise ratio is 3.1 , determine the transmission rate.

$$
\begin{aligned}
& C=? \\
& B=10000 \\
& r=3.1
\end{aligned}
$$

$$
\begin{aligned}
& c=10000 \log _{2}(3.1+1) \\
& c=10000 \log _{2}(4.1) \\
& c=10000\left[\frac{\log _{10} 4.1}{\log _{10} 2}\right] \\
& c=20356.24 \text { bits } / \mathrm{sec}
\end{aligned}
$$

Ex. \#4: Write an equation for the following transformations if the base equation is $f(x)=\log _{2} x$

- Vertical stretch by a factor of 3

$$
a=3
$$

- Reflection over the y axis b is negative
- Horizontal stretch by a factor of $5 \quad b=-\frac{1}{5}$
- Horizontal translation left $1 \quad h=-1 \quad(x+1)^{5}$
- Vertical translation down 8

$$
k=-8
$$

$$
f(x)=3 \log _{2}\left(-\frac{1}{5}(x+1)\right)-8
$$

If the point $(8,3)$ was on $f(x)$, what point will be on the transformed function?

$$
\left.\begin{array}{rl}
(8,3) \rightarrow \underset{\text { reflection }}{(-8,3) \rightarrow \underset{\text { Stretches }}{(})} \boldsymbol{(- 8 (5) , 3 (3))} \rightarrow & (-40-1,9-8) \\
\text { translations }
\end{array}\right] .
$$

