Pre-requisites for AP Calculus

Interval on the Real number line

Bounded Open Interval {x: a < x < b} (a,b)
Bounded Closed Interval {x: a ≤ x ≤ b} [a,b]
Unbounded Open Interval {x: x < b} (-∞,b) {x: x > a} (0, ∞)
Entire Real Line {x: x ∈ R} (-∞, ∞)

Solving Inequalities

a) Solve |x + 3| > 5

b) Quadratic Solve $x^2 < -2x + 8$

Coordinate Geometry

- Distance Formula $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- Midpoint Formula $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
- Standard Form of a Circle $(x h)^2 + (y k)^2 = r^2$

• Standard Form of a Parabola $y = a(x - p)^2 + q$

Rewrite
$$y = 2x^{2} - 12x + 7$$
 in standard form

$$y = 2(x^{2} - 6x) + 7$$

$$y = 2(x^{2} - 6x + 19) + 7 - 29$$

$$y = 2(x - 3)^{2} + 7 - 18$$

$$y = 2(x - 3)^{2} - 11$$

$$\left(\frac{-6}{2}\right)^2 = (-3)^2 = 9$$

Symmetry

Intercepts

Find the x and y intercepts of $y = x^3 - 4x$ X-intercept y=0 $0 = x^3 - 4x$ $0 = x(x^2 - 4)$ 0 = x(x+2)(x-2)Slope x=0 x=-2 x=2Y = intercept $y=0^3 - 4(0)$ y=0

17

 $m = \frac{y_2 - y_1}{x_2 - x_1}$

Equations of Lines

• General Form
$$AX + BY + C = D$$

- Vertical $\chi = 0$
- Horizontal y = b

• Point Slope
$$\gamma - \gamma_1 = w(X - X_1)$$

• Slope Intercept
$$y = mx + b$$

Parallel Lines: Same slope $M_1 = M_2$
Perpendicular Lines: Negative veciprocal slopes
 $M_1 = -\frac{1}{M_2}$ $M_1 = 3$ $M_2 = -\frac{1}{3}$

Domain and Range

Domain: Set of all x-values Range : Set of all y-values

Find the domain of
$$(x) = \sqrt{x^2 - x - 6}$$

Transformations

Vertical shift		Horizontal shift	
• $y = f(x) - c$	down	• $y = f(x - c)$	Right
• $y = f(x) + c$	υp	• $y = f(x + c)$	Lef+
Reflections		Stretches	
• $y = -f(x)$	Reflect over X-axis	• $y = af(x)$	Vertical Stretch factor a
• $y = f(-x)$	Reflect over y - axis	• $y = f(bx)$	Horizontal Shetch foctor b

y= x- x- 6

x>,3 x ≤ - Z [3,∞) V (-∞,-2]

Composition of Functions

$$(f \circ g)(x) = f(g(x))$$

Find $(f \circ g)(x)$ if $f(x) = 2x + 3$ and $g(x) = x^{2} + 1$

$$\left(\oint \circ g \right) (\chi) = \int \left(g(x) \right)$$

$$= \int \left(\chi^{2} + 1 \right)$$

$$= 2 \left(\chi^{2} + 1 \right) + 3$$

$$= 2 \chi^{2} + 2 + 3 = 2 \chi^{2} + 5$$

Trigonometry

Angles in Standard Position: Measured from the positive x-axis in a counterclockwise direction.

Coterminal Angles: Angles that have the same terminal arm. $0 \pm 360^{\circ}$ or 0 ± 217 (oferminal = O = 360°n = O = 2πn nEI

Radian Measure: $180^\circ = \pi$ radians

Convert $\frac{\pi}{2}$ into degrees $\frac{\pi}{2} \cdot \left(\frac{180^{\circ}}{11}\right) = 90^{\circ}$

Trig Functions:

Exact Values and Special Triangles:

cos 20 = 1-2 siño

Trig Equations:

Graphs of Trig Functions:

 $y = \sin x$

