## Exponential and Logarithmic Functions Review

Thursday, March 9, 2017 10:28 AM

AP Calculus
Chapter 7 Review
Exponential and Logarithmic Functions Review


Logarithmic Differentiation:

- Take the ln of both sides
- Simplify the ln
-Take the derivative (Implicit)

$$
\begin{aligned}
& \ln y=\ln x^{y=x^{\cos x} x} \\
& \ln y=\cos x \cdot \ln x
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\ln y & =\cos x \cdot \ln \\
\frac{1}{y} \cdot \frac{d y}{d x} & =\cos x \cdot \frac{1}{x}+(-\sin x) \ln x \\
d y & =y\left[\frac{\cos x}{x}-\sin x \ln x\right]+\operatorname{dos} x[\cos x \\
x
\end{array}\right]
$$

$$
=e^{u}+c
$$

$$
\begin{aligned}
& \int e^{u} d u \\
& u=1-2 x=\int e^{4} \cdot d u \quad \frac{d y}{d x} \quad \int e^{1-2 x} d x
\end{aligned} \quad d y=x \quad-\frac{1}{2} e^{u}+c
$$

$$
\begin{aligned}
u & =1-2 x \quad \\
\frac{d u}{d x} & =-2 e^{u} \cdot \frac{d u}{-2} \\
& =-\frac{1}{2} \int e^{u} d u
\end{aligned}
$$

$$
\begin{aligned}
& u=\int e^{4} \cdot \frac{d u}{-2} \\
& \frac{d u}{d x}=-2 \\
& \frac{d u}{-2}=d x \quad=-\frac{1}{2} \int e^{u} d u \quad=-\frac{1}{2} e^{1-2 x}+c \text { } x\left(x 6^{\left.x^{2}\right) d x}\right.
\end{aligned}
$$

$$
\int \frac{d u}{a^{2}+u^{2}}=\frac{1}{a} \arctan \frac{u}{a}+\left\{\begin{aligned}
u & =3 x \\
\frac{d u}{d x} & =3 \\
d u & =3 d x=\operatorname{l} \\
\sqrt{a^{2}-u^{2}} & \arcsin \frac{u}{a}+c
\end{aligned}\right.
$$

$$
\begin{aligned}
d u=3 d x & =\arcsin \frac{u}{a}+c \\
& =\arcsin \frac{3 x}{2}+
\end{aligned}
$$

$\int \frac{1}{u} d u=\ln |u|+C$

$$
\begin{aligned}
& =\arcsin \frac{a}{a x}+c \\
& =\arcsin \frac{1}{2}+0
\end{aligned}
$$

