Integration Problems

1. Oil is leaking form a tanker at a rate of $R(t)=2000 e^{-0.2 t}$ gallons/hour, where t is measured in hours. To the nearest gallon, how much oil has leaked out of the tanker after 10 hours?
2. Suppose the density of cars/mile for the first 30 miles along the Mass Pike from Boston during certain hours of the day can be modeled by $\quad p(x)=100(2-\sqrt[3]{0.1 x+0.2})$ where x represents the number of miles from Boston.
a) Write a function that gives the number of cars from Boston to a point x miles from Boston.
b) To the nearest car, how many cars are there on this 30 mile stretch of road?
3. Suppose the density of a circular oil slick on the surface of a body of water is given by: $p(r)=\frac{100}{1+r^{2}} \mathrm{~km} / \mathrm{m}^{2}$, (r is the distance from the center of the slick).
a) Suppose the slick extends from $r=0$ to $r=1000 \mathrm{~m}$. Determine the mass of the oil slick to the nearest kg.
b) What is the smallest radius that contains 75% of the oil slick's mass?
