Wednesday, February 22, 2017 11:45 AM

Pre-Calculus 12
5.1 Graphing Sine and Cosine Functions

The Graph of $f(\theta)=\sin \theta \quad \sin \theta=\frac{y}{r}$

Table of Values

$$
\begin{array}{c|c}
\theta & f(\theta) \\
\hline 0 & 0 / 1=0 \\
\pi / 2 & 1 / 1 \\
\pi & 01 \\
3 \pi / 2 & =0 \\
2 \pi & 0 / 1 / 1=0
\end{array}
$$

Pre-Calculus 12
The Graph of $f(\theta)=\cos \theta$

$$
\cos \theta=\frac{x}{r}
$$

Table of Values

Functions that repeat themselves over a particular interval are called periodic. The interval is called the period. The amplitude of a periodic function is one half the difference between the maximum and minimum values.

$$
\text { Amplitude }=\frac{|\max -\min |}{2}
$$

Ex.\#1: What is the amplitude and period of $\mathrm{y}=\sin \theta$ and $\mathrm{y}=\cos \theta$?

$$
\begin{aligned}
& y=\sin \theta \\
& \text { Amp }=\frac{|1-(-1)|}{2} \quad \text { period }=2 \pi \\
& A_{m p}=\frac{2}{2}=1 \\
& \begin{array}{l}
y=\cos \theta \\
\text { Amp }=\frac{|1-(-1)|}{2} \quad \text { period }=2 \pi
\end{array} \\
& A_{m p}=\frac{2}{2}=1
\end{aligned}
$$

Pre-Calculus 12
Ex. \#2: Graph $y=\sin x, y=4 \sin x$, and $y=0.5 \sin x$ for $0 \leq x \leq 2 \pi$ on the same axes and state the amplitude of each function.

$A_{m p}=\frac{|1-(-1)|}{2}$
Amp $=1$

$$
\begin{aligned}
& \begin{array}{ll|l}
y=4 \sin x & 0 & 0 \\
a=4 & \pi / 2 & 4 \\
\text { Multi } y^{\prime} s & \pi & 0 \\
\text { by (4) } & 3 \pi / 2 & -4 \\
\text { Amp } \left.=\frac{|4-(-4)|}{2} \right\rvert\, & =\frac{8}{2}=4
\end{array} \\
& \begin{array}{ll|l}
y=0.5 \sin x & \\
\begin{array}{ll}
a=0.5 & 0 \\
\hline
\end{array} & 0 \\
\text { Malt } y^{\prime} 5 & \pi / 2 & 0.5 \\
\text { by }(0.5) & \pi & 0 \\
\text { Amp }=\frac{10.5-(-0.5)}{2} & \frac{31 / 2}{2} & 2 \pi
\end{array}
\end{aligned}
$$

Ex. \#3: Graph $y=\cos x, y=\cos 2 x$, and $y=\cos \frac{x}{2}$ for $0 \leq x \leq 2 \pi \frac{5}{2}$ on the same axes and state the period of each function.

$$
\begin{array}{lc|c}
y=\cos 2 x & 0=0 / 2 & 1 \\
b=2 & \frac{\pi}{4}=\frac{\pi}{2}=2 & 0 \\
\text { divide } x^{\prime} s & -1 \\
\text { by (2) } & 3 \pi / 4=\pi / 2 & -1 \\
\text { period }=\pi & , \frac{3 \pi}{2}: 2 & 0 \\
4 & &
\end{array}
$$

$$
\begin{aligned}
& y=\cos \frac{x}{2}, \\
& y=\cos \frac{1}{2} x^{\prime} \\
& b=\frac{1}{2} \\
& \text { divide } \\
& x-v a l u e s \\
& b y\left(\frac{1}{2}\right) \text { per }
\end{aligned}
$$

Pre-Calculus 12

Note: For functions of the form $\mathrm{y}=\mathrm{a} \sin \mathrm{b} \theta$ and $\mathrm{y}=\mathrm{acos} \mathrm{b} \theta$, where $\mathrm{a}, \mathrm{b} \neq 0$, the amplitude is $|a|$ and the period is $\frac{2 \pi}{b}$ or $\frac{360^{\circ}}{b}$

Ex. \#4: State the amplitude and period of the following functions in radians:
(a) $y=2 \cos \frac{x}{3} \quad b=\frac{1}{3}$
(b) $y=-4 \sin (4)$

$$
b=4
$$

$$
\begin{aligned}
& \text { Amp }=|2|=2 \\
& \text { period }=\frac{2 \pi}{b}=\frac{2 \pi}{1 / 3} \\
&=2 \pi \cdot \frac{3}{1} \\
&=6 \pi
\end{aligned}
$$

Ex. \#5: State the amplitude and period of the following functions in degrees:
(a) $y=\frac{1}{2} \sin 2 \theta$
(b) $y=-\cos \frac{2 \theta}{3} \quad b=2 / 3$

$$
\begin{aligned}
\text { Amp } & =\left|\frac{1}{2}\right|=\frac{1}{2} \\
\text { period } & =\frac{360^{\circ}}{2} \\
\text { period } & =180^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
\text { Amp } & =|-1|=1 \\
\text { period } & =\frac{360^{\circ}}{2 / 3} \\
& =360^{\circ} \cdot \frac{3}{z_{1}} \\
& =540^{\circ}
\end{aligned}
$$

Ex. \#6: Write an equation of the given function with the following characteristics:
(a) sine function

$$
\text { period }=\frac{2 \pi}{b}
$$

$$
\begin{aligned}
& \text { amplitude }=3 \quad a=3 \\
& \text { period }=\frac{\pi}{4}
\end{aligned}
$$

$4 b \cdot \frac{\pi}{4}=\frac{2 \pi}{6} \cdot 46 \quad y=3 \sin 80$

$$
b \pi=8 \pi
$$

$$
b=8
$$

(b) cosine function

$$
y=3 \sin 80 \quad \text { period }=\frac{360}{6}
$$

$$
\begin{aligned}
& \text { amplitude }=\frac{1}{3} \quad a=\frac{1}{3} \\
& \text { period }=60^{\circ} \\
& \text { period }=\frac{360^{\circ}}{b} \\
& b 60^{\circ}=\left(\frac{360^{\circ}}{b}\right)^{b} \\
& b 60^{\circ}=360^{\circ} \quad y=\frac{1}{3} \cos 6 \theta \\
& b=6 \quad y
\end{aligned}
$$

$$
b=8
$$

$$
\begin{gathered}
b 6 u-x \quad y=\frac{1}{3} \cos x u \\
b=6
\end{gathered}
$$

Pre-Calculus 12

Ex. \#7: Determine the equation for the following sine function.

$$
\begin{aligned}
& \begin{array}{l}
\text { Amp } p=\frac{|3-(-3)|}{2}=\frac{6}{2}=3 \\
\text { period }=\pi \\
\text { period }=\frac{2 \pi}{b} \quad y=3 \sin 2 \theta \\
\pi=\frac{2 \pi}{b} \\
b=2
\end{array}
\end{aligned}
$$

Ex. \#8: Sketch the graph of the following functions.
$b=3$
(a) $y=\sin 3 x,-6 \pi \leq x<2 \pi=\frac{12 \pi}{6}$
(b) $y=-2 \cos \mathrm{x}, 0 \leq x \leq 2 \pi$

$$
\begin{aligned}
& b=3 \\
& \text { divide } \\
& \text { x's by } 3
\end{aligned}
$$

$$
\begin{array}{r|r}
0=0 / 3 & 0 \\
\frac{\pi}{6}=\pi / 3 \cdot 3 & 1 \\
2 \pi / 6=\pi / 3 & 0 \\
3 \pi / 6=3 \frac{3 \pi}{2} ; 3 & -1 \\
\frac{4 \pi}{6}=\frac{2 \pi}{3} & 0
\end{array}
$$

$$
\begin{array}{cc|c}
a=-2 & & \\
\text { Multi } y^{\prime} s & 0 & -2 \\
\text { by }(-2) & \pi / 2 & 0 \\
& \pi & 2 \\
& 3 \pi / 2 & 0 \\
& 2 \pi & -2
\end{array}
$$

