5.2 New

Pre-Calculus 12

5.2 Transformations of Sinusoidal Functions

The principles of transformations from Chapter 1 can be applied to the trigonometric functions.

Any sine or cosine function can be expressed in the form
$y=a \sin b(x-h)+k \quad$ or $\quad y-k=a \cos (b(x-h))$
Amplitude $=|a|$
$\begin{array}{ll}\text { Period }=\frac{2 \pi}{b} \text { or } \frac{360^{\circ}}{b} \\ \text { Phase Shift }=h & (x-\pi / 2) \text { right } \pi / 2 \quad(x+\pi / 4) \quad 1+f t \pi / 4)\end{array}$
Vertical Displacement (new center line) $=\mathrm{K}$
(sinusoidal axis)

Pre-Calculus 12

Ex.\#1: A sine function is given by the equation $y=3 \sin 2\left(x-\frac{\pi}{4}\right)+2$. Determine the following.
(a) Amplitude $=|3|=3$
(b) Period $=\frac{2 \pi}{2}=\pi$
(c) Phase shift
(d) Vertical displacement

$$
\frac{11}{4} \text { right }
$$

$$
2 \mathrm{up}
$$

(e) Domain

$$
\{x \mid x \in \mathbb{R}\}
$$

(f) Range +2

$$
\operatorname{Min}=-1(3)+2
$$

$$
\begin{array}{ll}
\text { Max }=1(1) R & \text { Min }=-1(3)+2 \\
\text { Max }=5 & \text { Min }=-1
\end{array}
$$

(g) y-intercept $X=0$
(h) Sketch the graph

$$
y=-3+2
$$

$$
y=-1
$$

phase shiP $\pi / 4$ Common denominator for phase shift and new x-values

Translate right $\pi / 4$ (1 box)

$$
\text { up } 2 \text { (} 2 \text { boxes) }
$$

Pre-Calculus 12

Ex. \#2: A cosine function is given by the equation $y=-2 \cos \frac{2}{3}\left(x-\frac{\pi}{4}\right)+1$. Determine the following.
(a) Amplitude $=|-2|=2$
(b) Period $=\frac{2 \pi}{2 / 3}=2 \pi \cdot \frac{3}{2}=3 \pi$
(c) Phase shift
(d) Vertical displacement

$$
\frac{11}{4} \text { right }
$$

$$
\text { UP } 1
$$

(e) Domain
(f) Range

$$
\{x \mid x \in \mathbb{R}\}
$$

(g) y-intercept $\quad X=0$
phase shift $\rightarrow \frac{\pi}{4}$ (l box) vertical displacement \uparrow (1 box).

Pre-Calculus 12

Ex. \#3: The partial graph of a cosine function is shown. Determine the equation of the

Amplitude

$$
\begin{aligned}
& A_{m p}=\frac{|\operatorname{Max}-\operatorname{Min}|}{2} \\
& A_{m p}=\frac{|5-(-1)|}{2} \\
& A_{m p}=\frac{6}{2}=3 \\
& A=3 \\
& \text { phase shalt } \\
& \begin{aligned}
y= & 3 \cos 3\left(x-\frac{\pi}{6}\right)+2 \\
& \rightarrow 5 \pi / 6
\end{aligned} \\
& y=3 \cos 3\left(x-\frac{5 \pi}{6}\right)+2 \\
& \leftarrow \pi / 6 \\
& y=-3 \cos 3(x+\pi / 6)+2 \\
& \text { Period }=\text { Subtract } 2 x \text {-value (peaks) } \\
& \text { period }=\frac{5 \pi}{6}-\frac{\pi}{6} \\
& \text { period }=\frac{4 \pi}{6}=\frac{2 \pi}{3} \quad \text { period }=\frac{2 \pi}{B} \\
& \frac{2 \pi}{3}=\frac{2 \pi}{B} \\
& 3=B
\end{aligned}
$$

