Pre-requisites for AP Calculus

Interval on the Real number line

- Bounded Open Interval $\{x: a < x < b\}$
- Bounded Closed Interval $\{x: a \le x \le b\}$
- Unbounded Open Interval $\{x: x < b\}$ $\{x: x > a\}$
- Entire Real Line $\{x: x \in R\}$

Solving Inequalities

a) *Solve* |x + 3| > 5

b) Quadratic Solve $x^2 < -2x + 8$

Coordinate Geometry

- Distance Formula $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- Midpoint Formula $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$
- Standard Form of a Circle $(x h)^2 + (y k)^2 = r^2$
- Standard Form of a Parabola $y = a(x p)^2 + q$

Rewrite $y = 2x^2 - 12x + 7$ *in standard form*

Symmetry

y-axis symmetry	x-axis symmetry	origin symmetry

1

Determine if the function is even or odd.	
$f(x) = x^3 - x$	$f(x) = x^2 + $

Intercepts

Find the x and y intercepts of $y = x^3 - 4x$

Slope

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Positive Slope	Zero Slope	Negative Slope	No Slope or Undefined Slope

Equations of Lines

- General Form
- Vertical
- Horizontal
- Point Slope
- Slope Intercept

Parallel Lines:

Perpendicular Lines:

Domain and Range

Domain: Set of all x-values Range : Set of all y-values

Find the domain of $f(x) = \sqrt{x^2 - x - 6}$

Transformations

Vartical shift	Having and all all if	
vertical shift	Horizontal shift	
• $y = f(x) - c$	• $y = f(x - c)$	
f(x) + c	• $y = f(x + z)$	
• $y = f(x) + c$	• $y = f(x + c)$	
Reflections	Stretches	
• $v = -f(x)$	• $y = af(x)$	
, , , , , , , , , , , , , , , , , , ,	<i>y wy</i> (<i>w</i>)	
• $y = f(-x)$	• $y = f(bx)$	

Composition of Functions

 $(f \circ g)(x) = f(g(x))$

Find $(f \circ g)(x)$ if f(x) = 2x + 3 and $g(x) = x^2 + 1$

Trigonometry

Angles in Standard Position: Measured from the positive x-axis in a counterclockwise direction.

Coterminal Angles: Angles that have the same terminal arm.

Radian Measure: $180^\circ = \pi \ radians$

Convert 40° into radians.

Convert $\frac{\pi}{2}$ into degrees

Trig Functions:

$\sin \theta =$	$\csc \theta =$
$\cos \theta =$	$\sec \theta =$
$\tan \theta =$	$\cot \theta =$

Exact Values and Special Triangles:

Trig Equations:

Solve $\cos 2\theta = 2 - 3\sin \theta$ where $0 \le \theta < 2\pi$

Graphs of Trig Functions:

 $y = \cos x$ and $\sec x$

 $y = \tan x$ and $y = \cot x$

