\qquad

Pre-Calculus 12: Final Review

Chapter 1 \&2 Transformations

1. In what order should transformations be applied to a graph?
2. Describe the transformations in each equation in an appropriate order.
a) $2 y-8=6 f(x-2)$
b) $y=-3 f[-4(x-1)]+2$
3. Draw the transformations of each graph.
a) $y=f\left(-\frac{1}{4} x\right)+1$
b) $f(x)=2 f(3 x-6)-10$

4. The following transformations are applied to a function $y=f(x)$

Vertical stretch by a factor of 4
Horizontal stretch by a factor of 3
Reflection over the x-axis
Translated 2 up, 5 to the left
a) Create a mapping notation for the transformations
b) If the point $(-2,5)$ is on $f(x)$, use the mapping notation to find the new point after the transformations are applied.
5. Sketch the inverse of the relation.

6. Find the inverse of $f(x)=\frac{3}{x-2}$
7. The domain and range of a function are: $\{x \mid-3 \leq x \leq 6 \quad x \in R\}\{y \mid y>7 y \in R\}$ State the domain and range of the inverse.
8. Sketch the graph of the function using transformations. List the transformations in an appropriate order. State its domain and range.

$$
y=2 \sqrt{x-3}+4
$$

Domain:

Range:
9. Write a single equation for a radical function with the given domain and range.

D: $\{x / x \geq 3, x \in \mathfrak{R}\}$
$\mathrm{R}:\{y / y \leq-5, y \in \mathfrak{R}\}$
10. Solve the equation graphically.
$2 \sqrt{x+2}=1-x$

Chapter 3 Polynomials

1. For the following polynomial function, state the following:

$$
f(x)=x^{4}-5 x^{3}+2 x^{2}+20 x-24
$$

a) degree
b) type \qquad
c) leading coefficient
d) constant term
\qquad
e) the value of the y-intercept
f) maximum possible number of x-intercepts \qquad
g) end behavior of the corresponding graph \qquad
2. Use the Factor Theorem to determine whether $x^{4}-2 x^{3}+3 x-4$ has a factor of $x-2$
3. For the following function determine a) the x-intercepts, b) the degree c) end behavior of the graph, d) the zeroes and their multiplicity, e) the y-intercept of the graph, and f) the intervals where the function is positive and g) the intervals where the function is negative.

$$
f(x)=x^{4}+4 x^{3}-7 x^{2}-34 x-24
$$

y-intercept
degree and end behavior
x-intercepts
zeroes and multiplicity
intervals of positive and negative
4. Find the value of " k " if the remainder is 3 when $x^{3}-x^{2}+k x-15$ is divided by $x-2$.

Chapter 4 Trigonometry and the Unit Circle

1. Change the given angle from radians to degrees or vice-versa.
a) $\frac{5 \pi}{9}$
b) 240°
2. Find one positive and one negative co-terminal angle for the original angles in question \#1.
3. A circle as central angle of 40° and a radius of 7 ft . Find the arclength of the sector.
4. A radius of a circle is 8 cm , and the length of an arc on the circle is 12 cm . In radians, what is the central angle that subtends this arc length?
5. The point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ is located where the terminal arm of angle θ and the unit circle intersect. Determine the coordinates of point P if :
a) $\theta=210^{\circ}$
b) $\theta=\frac{3 \pi}{4}$
6. Identify a measure for the central angle θ in the interval $0 \leq \theta \leq 2 \pi$ such that $P(\theta)$ is the given point.
a) $\left(-\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$
b) $(1,-\sqrt{3})$
7. Solve algebraically for the domain stated. $0 \leq x<2 \pi$. Answer using exact values. $5 \sin \theta+2=1+3 \sin \theta$

Chapter 5 Trigonometric Functions and Graphs

1. Determine the key features for the function $y=-5 \sin \left(\frac{1}{2}\left(x-\frac{\pi}{2}\right)\right)+15$
a) Amplitude: \qquad b) Period: \qquad
c) Phase Shift: \qquad d) Vertical displacement:
e) Domain: \qquad f) Range: \qquad
\qquad
2. Write the equation of each sine function in the form $y=\operatorname{asinb}(x-c)+d$ given its characteristics.
a) amplitude 2 , period π, phase shift $\frac{\pi}{3}$ to the left, vertical displacement 1 unit down
b) amplitude $\frac{1}{4^{\prime}}$, period 6π, phase shift π to the right, vertical displacement 2 units up.
3. Graph the following function (show 2 periods) State the period and phase shift

$$
y=2 \cos \frac{1}{2}\left(x-\frac{\pi}{2}\right)+2
$$

period: \qquad phase shift: \qquad

4. Solve the following trigonometric equations algebraically, using exact values. Show all work.
a) $4 \sin \left(x-\frac{\pi}{3}\right)=-2 \quad 0 \leq x<2 \pi$
b) $2 \sin ^{2} x+5 \sin x-3=0 \quad 0 \leq x<2 \pi$

Chapter 6 Trigonometric Functions and Identities

1. Simplify the following:
a) $\cos \left(\alpha+90^{\circ}\right)$
b) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
2. Solve the following, accurate to 2 decimal places for $0 \leq \theta<2 \pi$.
a) $2 \sec ^{2} x+5 \sec x-3=0$
b) $2 \cos ^{2} x=-3 \sin x$
3. Solve for all possible solutions in radians. (Find a general solution) $\sin 2 x=2 \sin x$
4. Use sum or difference identities to find the exact value of each trigonometric expression.
a) $\sin 15^{\circ}$
b) $\tan 165^{\circ}$
5. Simplify the following:
a) $\cot ^{2} x \sin ^{2} x+\cos ^{2} x$
b) $\frac{\sec \theta-\cos \theta}{\csc \theta-\sin \theta}$
c) $(1+\cos \theta)(\csc \theta-\cot \theta)$
6. Prove the identity.
a) $\sin ^{3} x+\sin x \cos ^{2} x=\sin x$
b) $\frac{1+\cos x+\cos 2}{\sin x+\sin 2}=\cot x$
c) $\frac{\sin 2 x}{2-2 \cos ^{2} x}=\cot x$
d) $\frac{\cot x}{\csc x-1}=\frac{\csc x+1}{\cot x}$

Chapter 7 Exponential Functions

1. Sketch the graph of each function using transformations and tables of values. List the transformations in an appropriate order. (4 marks each)
(a) $y=-2(2)^{x-1}+4$

-
-
-
- \qquad

2. Solve
a) $64^{4 x}=16^{(x+5)}$
b) $36^{-3 n} \cdot 216=\left(\frac{1}{216}\right)^{-2 n}$
c) $\frac{9^{3 x}}{243^{-x-1}}=81^{2 x}$
3. The half -life of sodium-24 is 17 hours. A chemistry teacher has 40 mg of sodium-24. After how long will only 5 mg remain?
4. A bacteria culture contains 6250 bacteria and doubles every 3 hours. What was the population 9 hours ago?
5. The initial count was 530 bacteria in a culture. Ten hours later, there were 14310 bacteria. What is the tripling period for this type of bacteria?

Chapter 8 Logarithmic Functions

1. For the equation $y=3 \log _{5}(6(x+2))-4$, state:
a) domain
b) range
c) equation of the asymptote
d) x-intercept (if it exists)
e) y-intercept (if it exists)
2. Simplify to a single log and then evaluate if possible.
a) $2 \log _{2} 12-\left(\log _{2} 6+\frac{1}{3} \log _{2} 27\right)$
b) $2 \log _{5} 4+\log _{5} 3-\log _{5} 11$
c) $\log x-3 \log y+\frac{2}{3} \log z$
d) $\log _{2}(x+2)+\log _{4} x$
3. Solve, answer to nearest hundredth if necessary.
a) $\log _{7}(2 x-3)-\log _{7}(x+2)=1$
b) $\log _{b}(x+2)-\log _{b} 4=\log _{b} 3 x$
c) $2 \log _{4}(x+4)-\log _{4}(x+12)=1$
d) $2 \ln (5 x-2)=16$
4. Solve, answer to nearest hundredth if necessary.
a) $9^{2 x-1}=71^{x+2}$
b) $4\left(7^{x+2}\right)=9^{2 x-3}$
c) $e^{3 x+1}=2$

Chapter 9 Rational Functions

1. For each function, find the locations of any vertical asymptotes, points of discontinuity, and intercepts.
a) $y=\frac{x^{2}+4 x}{x^{2}+9 x+20}$
b) $y=\frac{2 x^{2}-5 x-3}{x^{2}-1}$
2. Graph the functions
a) $y=\frac{-2}{x+3}+1$
b) $y=\frac{4 x-5}{x-2}$

Chapter 10 Composite Functions

1. If $f(x)=\sqrt{x+2}$ and $g(x)=|2 x|$, find $f \circ g(-7)$
2. $f(x)=x^{2}+7$ and $g(x)=2 x-1$ find $f(g(x))$

Chapter 12 Series

1. How many terms are in the sequence $2,6,18, \ldots, 486$
2. The sum of an infinite geometric series is 63 and the first term is 21 . Find the common ratio.
3. Find the sum of the first 12 terms of the series. $12+4+\frac{4}{3} \ldots$
